Part Number Hot Search : 
Z8681B1 SMC130C 8599B 4742A 15757F 12XXX CAT523LI TLP3545
Product Description
Full Text Search
 

To Download TB1227CNG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TB1227CNG TENTATIVE
TOSHIBA Bi-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC
TB1227CNG
VIDEO, CHROMA AND SYNCHRONIZING SIGNALS PROCESSING IC FOR PAL / NTSC / SECAM SYSTEM COLOR TV
TB1227CNG that is a signal processing IC for the PAL / NTSC / SECAM color TV system integrates video, chroma and synchronizing signal processing circuits together in a 56-pin shrink DIP plastic package. TB1227CNG incorporates a high performance picture quality compensation circuit in the video section, an automatic PAL / NTSC / SECAM discrimination circuit in the chroma section, and an automatic 50 / 60Hz discrimination circuit in the synchronizing section. Besides a crystal oscillator that internally generates 4.43MHz, 3.58MHz and M / N-PAL clock signals for Weight: 5.55 g (typ.) color demodulation, there is a horizontal PLL circuit built in the IC. The PAL / SECAM demodulation circuit which is an adjustment-free circuit incorporates a 1H DL circuit inside for operating the base band signal processing system. Also, TB1227CNG makes it possible to set or control various functions through the built-in I2C bus line.
FEATURES
Video section
* Built-in trap filter * Black expansion circuit * Variable DC regeneration rate * Y delay line * Sharpness control by aperture control * correction * VSM output
Chroma section
* Built-in 1H Delay circuit * PAL / SECAM base band demodulation system * One crystal color demodulation circuit (4.43MHz, 3.58MHz, M / N-PAL) * Automatic system discrimination, system forced mode * 1H delay line also serves as comb filter in NTSC demodulation * Built-in band-pass filter, SECAM bell filter * Color limiter circuit * Fsc output
Synchronizing deflecting section
* Built-in horizontal VCO resonator * Adjustment-free horizontal / vertical oscillation by count-down circuit * Double AFC circuit * Vertical frequency automatic discrimination circuit * Horizontal / vertical holding adjustment * Vertical ramp output * Vertical amplitude adjustment * Vertical linearity / S-shaped curve adjustment
1
2004-05-24
TB1227CNG
* SCP (Sand Castle Pulse) output
Text section
* Linear RGB input * OSD RGB input * Cut / off-drive adjustment * RGB primary signal output
2
2004-05-24
TB1227CNG
BLOCK DIAGRAM
3
2004-05-24
TB1227CNG
TERMINAL FUNCTIONS
PIN No. PIN NAME FUNCTION INTERFACE CIRCUIT INPUT / OUTPUTSIGNAL
1
SCP OUTPUT
Output terminal of Sand Castle Pulse. (SCP) To connect drive resistor for SCP.
2
V-AGC
Controls pin 52 to maintain a uniform V-ramp output. Connect a current smoothing capacitor to this pin.
--
3
H-VCC (9V)
VCC for the DEF block (deflecting system). Connect 9V (Typ.) to this pin.
--
--
4
Horizontal Output
Horizontal output terminal.
5
Picture Distortion Correction
Corrects picture distortion in high voltage variation. Input AC component of high voltage variation. For inactivating the picture distortion correction function, connect 0.01F capacitor between this pin and GND.
4.5V at Open
6
FBP Input
FBP input for generating horizontal AFC2 detection pulse and horizontal blanking pulse. The threshold of horizontal AFC2 detection is set H.VCC-2Vf (Vf0.75V). Confirming the power supply voltage, determine the high level of FBP.
4
2004-05-24
TB1227CNG
PIN No. INPUT / OUTPUT SIGNAL
PIN NAME
FUNCTION
INTERFACE CIRCUIT
7
Coincident Det.
To connect filter for detecting presence of H. synchronizing signal or V. synchronizing signal.
--
8
VDD (5V)
VDD terminal of the LOGIC block. Connect 5V (Typ.) to this pin.
--
--
9
SCL
SCL terminal of I C bus.
2
--
10
SDA
SDA terminal of I C bus.
2
11
Digital GND
Grounding terminal of LOGIC block.
--
--
12 13 14
B Output G Output R Output R, G, B output terminals.
15
TEXT GND
Grounding terminal of TEXT block.
--
--
16
ABCL
External unicolor brightness control terminal. Sensitivity and start point of ABL can be set through the bus.
6.4V at Open
17
RGB-VCC (9V)
VCC terminal of TEXT block. Connect 9V (Typ.) to this pin.
--
----
5
2004-05-24
TB1227CNG
PIN No. 18 19 20 INPUT / OUTPUT SIGNAL OSD 3.0V TEXT 2.0V GND
PIN NAME
FUNCTION Input terminals of digital R, G, B signals. Input DC directly to these pins. OSD or TEXT signal can be input to these pins.
INTERFACE CIRCUIT
Digital R Input Digital G Input Digital B Input
21
Digital YS / YM
Selector switch of halftone / internal RGB signal / digital RGB (pins 18, 19, 20).
OSD 3.0V TEXT 2.0V H.T. 1.0V TV GND
22
Analog YS
Selector switch of internal RGB signal or analog RGB (pins 23, 24, 25).
Analog RGB 0.5V TV GND
23 24 25
Analog R Input Analog G Input Analog B Input
Analog R, G, B input terminals. Input signal through the clamping capacitor. Standard input level : 0.5Vp-p (100 IRE).
26
Color Limiter
To connect filter for detecting color limit.
--
27
FSC Output
Output terminal of FSC.
6
2004-05-24
TB1227CNG
PIN No. PIN NAME FUNCTION INTERFACE CIRCUIT INPUT / OUTPUT SIGNAL
28
1Bit DAC Output Terminal
Enable to change slave address to 8Ah by a connecting VCC with this terminal.
29
VSM Output Terminal
Power output the signal that is primary differentiated Y signal. Enable to change output amplifier and phase by the Bus.
--
30
APC Filter
To connect APC filter for chroma demodulation.
DC 3.2V
31
Y2 Input
Input terminal of processed Y signal. Input Y signal through clamping capacitor. Standard input level : 0.7Vp-p
32
Fsc GND
Grounding terminal of VCXO block. Insert a decoupling capacitor between this pin and pin 38 (Fsc VDD) at the shortest distance from both.
--
--
DC 2.5V 33 34 B-Y Input R-Y Input Input terminal of B-Y or R-Y signal. Input signal through a clamping capacitor. AC B-Y : 650mVp-p R-Y : 510mVp-p (with input of PAL-75% color bar signal)
7
2004-05-24
TB1227CNG
PIN No. PIN NAME FUNCTION INTERFACE CIRCUIT INPUT / OUTPUT SIGNAL DC 1.9V 35 36 R-Y Output B-Y Output Output terminal of demodulated R-Y or B-Y signal. There is an LPF for removing carrier built in this pin. AC B-Y : 650mVp-p R-Y : 510mVp-p (with input of PAL-75% color bar signal)
37
Y Output
Output terminal of processed Y signal. Standard output level : 0.7Vp-p
38
Fsc VDD
VDD terminal of DDS block. Insert a decoupling capacitor between this pin and pin 32 (Fsc GND) at the shortest distance from both. If decouping capacitor is inserted at a distance from the pins, it may cause spurious deterioration.
--
--
39
Black Stretch
To connect filter for controlling black expansion gain of the black expansion circuit. Black expansion gain is determined by voltage of this pin.
DC 1.6V
To connect 16.2MHz crystal clock for generating sub-carrier. 40 16.2MHz X'tal Lowest resonance frequency (f0) of the crystal oscillation can be varied by changing DC capacity. Adjust f0 of the oscillation frequency with the board pattern. DC 4.1V
8
2004-05-24
TB1227CNG
PIN No. 41 PIN NAME Y / C VCC (5V) FUNCTION VCC terminal of Y / C signal processing block. INTERFACE CIRCUIT -- INPUT / OUTPUT SIGNAL --
42
Chroma Input
Chroma signal input terminal. Input negative 1.0Vp-p sync composite video signal to this pin through a coupling capacitor.
DC 2.4V AC : 300mVp-p burst
43
Y / C GND
Grounding terminal of Y / C signal processing block.
--
--
44
APL
To connect filter for DC regeneration compensation. Y signal after black expansion can be monitored by opening this pin.
DC 2.2V
45
Y1 Input
Input terminal of Y signal. Input negative 1.0Vp-p sync composite video signal to this pin through a clamping capacitor.
46
S-Demo-Adj.
To connect f0 adjustment filter for SECAM demodulation.
DC 3.2V
47
V-Center
DC Output Terminal For V Centering. Enable to control output DC voltage by the bus.
DC 2.7~6.3V
9
2004-05-24
TB1227CNG
PIN No. PIN NAME FUNCTION INTERFACE CIRCUIT INPUT / OUTPUT SIGNAL
48
AFC1 Filter
To connect filter for horizontal AFC1 detection. Horizontal frequency is determined by voltage of this pin.
DC 5.0V
49
Sync Output
Output terminal of synchronizing signal separated by sync separator circuit. Connect a pull-up resistor to this pin because it is an open-collector output type.
50
V-Sepa.
To connect filter for vertical synchronizing separation.
DC 5.9V
51
Sync Input
Input terminal of synchronizing separator circuit. Input signal through a clamping capacitor to this pin. Negative 1.0Vp-p sync.
52
V-Ramp
To connect filter for generating V-ramp waveform.
10
2004-05-24
TB1227CNG
PIN No. PIN NAME FUNCTION INTERFACE CIRCUIT INPUT / OUTPUT SIGNAL
53
Vertical Output
Output terminal of vertical ramp signal.
54
V-NF
Input terminal of vertical NF signal.
55
DEF GND
Grounding terminal of DEF (deflection) block.
--
--
56
V BLK Output
Output terminal of V blanking.
11
2004-05-24
TB1227CNG
BUS CONTROL MAP WRITE DATA Slave address : 88H (Pin28-High : 8AH)
BLOCK SUB ADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F MSB 7 6 5 4 Uni-Color BRIGHT COLOR TINT SHARPNESS B-Mon Y SUB CONTRAST RGB-CONTRAST * * * * * * * * Y WPL SW 0 BLUE BACK MODE Y-DL SW G DRIVE GAIN B DRIVE GAIN HORIZONTAL POSITION AFC MODE H-CK SW R CUT OFF G CUT OFF B CUT OFF B. S. OFF C-TRAP OFST SW C-TOF P / N GP CLL SW WBLK SW WMUT SW S-INHBT 358 Trap F-B / W X'tal MODE COLOR SYSTEM R-Y BLACK OFFSET B-Y BLACK OFFSET CLL LEVEL PN CD ATT TOF Q TOF FO V-MODE VSM PHASE VSM GAIN C-TRAP Q C-TRAP FO BLACK STRETCH POINT DC TRAN RATE APA-CON FO / SW ABL POINT ABL GAIN HALF TONE SW H BLK PHASE V FREQ V OUT PHASE V-AMPLITUDE * V CENTERING COINCIDENT DET V S-CORRECTION DRG SW V LINEARITY V-CD MD DRV CNT VAGC SP MUTE MODE WIDE V-BLK START PHASE BLK SW WIDE V-BLK STOP PHASE NOISE DET LEVEL WIDE P-MUTE START PHASE N COMB WIDE P-MUTE STOP PHASE S-field SCD ATT DEMP FO S GP V-ID SW S KIL BELL FO 0 R-Mon * P / N KIL DTrp-SW 3 2 1 LSB 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 PRESET 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1
VIDEO / TEXT
-- VIDEO / TEXT DEF TEXT (P / N)
SYSTEM P/N Vi / C VIDEO (DEF)
GEOMETRY
DEF-V
SECAM
Note:
* : Data is ignored.
12
2004-05-24
TB1227CNG
READ-IN DATA Slave address : 89H (Pin28-High : 8BH)
MSB 7 00 01 PORES LOCK 6 5 4 X'tal UV-IN Y2-IN 3 2 V-FREQ H 1 V-STD V LSB 0 N-DET V-GUARD
COLOR SYSTEM RGBOUT Y1-IN
BUS CONTROL FUNCTION WRITE FUNCTION
ITEM UNI-COLOR BRIGHT COLOR TINT P / N KIL SHARPNESS DTrp-SW R-Mon B-Mon Y SUB CONTRAST RGB-CONTRAST Y WPL SW BLUE BACK MODE Y-DL SW G DRIVE GAIN B DRIVE GAIN HORIZONTAL POSITION DESCRIPTION -- -- -- -- P / N KILLER sensitivity control -- SECAM double trap ON / OFF TEXT-11 dB pre-amplification UV output (Pin 35 : Bo, Pin 36 : Ro) -- EXT RGB UNI-COLOR control ON / OFF White peak limit level Luminance selector switch Y-DL TIME (28, 33, 38, 43, 48) -- -- Horizontal position adjustment NUMBER OF BITS 8bit 8bit 8bit 7bit 1bit 6bit 1bit 1bit 1bit 5bit 8bit 1bit 1bit 2bit 3bit 8bit 8bit 5bit VARIABLE RANGE -18dB~0dB -1V~1V ~0dB -45~45 Normal / Low -6dB~12dB ON / OFF Normal / Monitor Normal / Monitor -3dB~+3dB -18dB~0dB OFF / 95 IRE 130 IRE / OFF IRE ; OFF, 40, 50, 50 280~480ns after Y IN -5dB~3dB -5dB~3dB -3s~+3s PRESET VALUE 80h MAX-5.0dB 80h 0V 80h -6dB 40h 0 00h NORMAL 20h +3dB 01h OFF 00h Normal 00h Normal 10h 0dB 80h MAX - 5.0dB 00h ON 00h 130 IRE 00h OFF 04h 480ns 80h 0dB 80h 0dB 10h 0s
13
2004-05-24
TB1227CNG
NUMBER OF BITS 2bit 1bit 8bit 8bit 8bit 1bit 1bit 1bit 1bit 1bit 1bit 1bit 1bit 1bit 1bit 1bit
ITEM AFC MODE H-CK SW R CUT OFF G CUT OFF B CUT OFF B. S. OFF C-TRAP FST SW C-TOF P / N GP CL-L SW WBLK SW WMUT SW S-INHBT 3.58 Trap F-B / W
DESCRIPTION AFC1 detection sensitivity selector HOUT generation clock selector -- -- -- Black expansion ON / OFF Chroma Trap ON / OFF SW Black offset SECAM discrimination interlocking switch P / N TOF ON / OFF SW PAL GATE position COLOR LIMIT ON / OFF WIDE V-BLK ON / OFF WIDE Picture-MUTE ON / OFF To detect or not to detect SECAM C Trap-f0, force 3.58MHz switch Force B / W switch
VARIABLE RANGE dB ; AUTO, 0, -10, -10 384fh-VCO, FSC-VCXO -0.5~0.5V -0.5~0.5V -0.5~0.5V ON / OFF ON / OFF SECAM only / All systems ON / OFF Standard / 0.5s delay ON / OFF OFF / ON OFF / ON Yes / No AUTO / Forced 3.58MHz AUTO / Forced B / W 000 ; European system AUTO, 001 ; 3N 010 ; 4P 011 ; 4P (N inhibited) 100 ; S.American system AUTO 101 ; 3N 110 ; MP 111 ; NP
PRESET VALUE 00h AUTO 01h FSC-VCXO 00h -0.5V 00h -0.5V 00h -0.5V 00h ON 00h ON 00h S only 00h ON 00h Standard 00h ON 00h OFF 00h OFF 00h Yes 00h AUTO 00h AUTO
X'tal MODE
APC oscillation frequency selector switch
3bit
00h
European system AUTO
COLOR SYSTEM R-Y BLACK OFFSET B-Y BLACK OFFSET CLL LEVEL
Chroma system selection R-Y color difference output black offset adjustment B-Y color difference output black offset adjustment Color limit level adjustment
2bit 4bit 4bit 2bit
AUTO, PAL, NTSC, SECAM -24~21mV STEP 3mV -24~21mV STEP 3mV 91, 100, 108, 116%
00h AUTO 08h 0mV 08h 0mV 02h 108%
Note:
3N; 3.58-NTSC, 4P; 4.43-PAL, MP ; M-PAL, NP; N-PAL European system AUTO; 4.43-PAL, 4.43-NSTC, 3.58-NTSC, SRCAM S. American system AUTO; 3.58-NTSC, M-PAL, N-PAL
14
2004-05-24
TB1227CNG
ITEM PN CD ATT TOF Q TOF F0 VSM PHASE VSM GAIN C-TRAP Q C-TRAP F0 BLACK STRETCH POI DESCRIPTION P / N color difference amplitude adjustment TOF Q adjustment TOF f0 adjustment VSM output phase VSM output gain Chroma trap Q control Chroma trap f0 control Black expansion start point setting Direct transmission compensation degree selection Sharpness peak frequency selection ABL detection voltage ABL sensitivity Halftone gain selection Horizontal blanking end position Vertical frequency Vertical position adjustment Vertical amplitude selection 1bit DAC output V Centering Discriminator output signal selection Vertical S-curve correction Force Sync Mode Selection Drive reference axis selection Vertical linearity correction Noise Det SW Vertical count-down mode selection NUMBER OF BITS 2bit 2bit 2bit 2bit 2bit 2bit 2bit 3bit VARIABLE RANGE +1~-2dB STEP 1dB 1.0, 1.5, 2.0, 2.5 kHz ; 0, 500, 600, 700 +20ns, +20ns, 0ns, 0ns 0dB, 0dB, -6dB, OFF 1.0, 1.5, 2.0, 2.5 kHz ; -100, -50, 0, +50 28~70% IREx0.4 PRESET VALUE 01h 0dB 02h 2.0 02h 600kHz 02h 0ns 03h OFF 02h 2.0 02h 0kHz 05h 56% IRE
DC TRAN RATE
3bit
100~130% APL
00h 100%
APA-CON PEAK F0 ABL POINT ABL GAIN HALF TONE SW H BLK PHASE V FREQ V OUT PHASE V-AMPLITUDE 1bit DAC V CENTERING
2bit 3bit 3bit 2bit 3bit 2bit 3bit 7bit 1bit 6bit
kHz ; 2.5, 3.1, 4.2, OFF ABL point ; 6.5V~5.9V Brightness ; 0~-2V -3dB, -6dB, OFF, OFF 0~3.5s step 0.5s AUTO, 60Hz, Forced 60, 50, 60 0~7H STEP 1H -50~50% LOW, HIGH 1~4V 00 ; DSYNC 01 ; DSYNCxAFC 10 ; Field counting 11 ; VP is present. Reverse S-curve, S-curve TELETEXT / Normal R/G (one side) Normal, Low AUTO / Force synchronization
02h 4.2kHz 00h 6.5V 00h 0V 00h -3dB 00h 0s 00h AUTO 00h 0H 40h 0% 00h LOW 20h 2.5V
COINCIDENT MODE
2bit
02h Field counting
V S-CORRECTION V-MODE DRG SW V LINEARITY ND SW V-CD MD
7bit 1bit 1bit 5bit 1bit 1bit
40h 01h Normal 00h R 00h 00h Normal 00h AUTO
--
--
15
2004-05-24
TB1227CNG
ITEM DRV CNT VAGC SP MUTE MODE WIDE V-BLK START PH BLK SW DESCRIPTION All drive gains forced centering switch Vertical ramp time constant selection OFF, RGB mute, Y mute, transverse Vertical pre-position selection Blanking ON / OFF NUMBER OF BITS 1bit 1bit 2bit 6bit 1bit 7bit 2bit 6bit 1bit 7bit VARIABLE RANGE OFF / Force centering Normal / High speed OFF, RGB, Y, Transverse -64~-1H STEP 1H ON / OFF 0~128H STEP 1H 0.20, 0.15, 0.10, 0.05 -64~-1H STEP 1H OFF / ADD 0~128H STEP 1H Weak electric field control ON / OFF 0 / -1dB 85kHz / 100kHz Standard / 0.5s delay OFF / ON NORMAL / LOW -46~92kHz STEP 46kHz PRESET VALUE 00h OFF 01h High speed 01h RGB 3Fh -1H 00h ON 00h 0H 02h 0.1 3Fh -1H 00h OFF 00h 0H
Vertical post-position WIDE V-BLK STOP PH selection NOISE DET LEVEL WIDE P-MUTE START PH N COMB WIDE P-MUTE STOP PH S-field Noise detection level selection Video mute pre-position selection 1H addition selection Video mute post-position selection SECAM color and Q selection in weak electric field SECAM color difference amplitude adjustment SECAM deemphasis time constant selection SECAM gate position selection SECAM V-ID ON / OFF switch SECAM KILLER sensitivity selection Bell f0 adjustment
1bit
00h ON
SCD ATT DEMO F0 S GP V-ID SW S KIL BELL F0
1bit 1bit 1bit 1bit 1bit 2bit
00h 0dB 00h 85kHz 00h Standard 00h OFF 00h NORMAL 01h 0kHz
16
2004-05-24
TB1227CNG
READ-IN FUNCTION
ITEM PONRES COLOR SYSTEM DESCRIPTION 0 : POR cancel, 1 : POR ON 00 : B / W, 01 : PAL 10 : NTSC, 11 : SECAM 00 : 4.433619MHz 01 : 3.579545MHz 10 : 3.575611MHz (M-PAL) 11 : 3.582056MHz (N-PAL) 0 : 50Hz, 1 : 60Hz 0 : NON-STD, 1 : STD 0 : Low, 1 : High 0 : UN-LOCK, 1 : LOCK Self-diagnosis 0 : NG, 1 : OK Detection of breaking neck 0 : Abnormal, 1 : Normal NUMBER OF BITS 1bit 2bit
X'tal
2bit
V-FREQ V-STD N-DET LOCK RGBOUT, Y1-IN UV-IN, Y2-IN, H, V V-GUARD
1bit 1bit 1bit 1bit 1bit each 1bit
DATA TRANSFER FORMAT VIA I C BUS
Start and stop condition
2
Bit transfer
Acknowledge
17
2004-05-24
TB1227CNG
Data transmit format 1
Data transmit format 2
Data receive format
At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave. The STOP condition is generated by the master.
Optional data transmit format : Automatic increment mode
In this transmission method, data is set on automatically incremented sub-address from the specified sub-address. Purchase of TOSHIBA I2C components conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.
18
2004-05-24
TB1227CNG
MAXIMUM RATINGS (Ta = 25C)
CHARACTERISTIC Supply Voltage Permissible Loss Power Consumption Declining Degree Input Terminal Voltage Input Signal Voltage Operating Temperature Conserving Temperature SYMBOL VCCMAX PDMAX 1 / Qja Vin ein Topr Tstg RATING 12 2190 (Note) 17.52 GND - 0.3~VCC + 0.3 7 -20~65 -55~150 UNIT V mW mW / C V Vp-p C C
Note:
In the condition that IC is actually mounted. See the diagram below.
Fig. Power consumption declining curve relative to temperature change
19
2004-05-24
TB1227CNG
OPERATING CONDITIONS
CHARACTERISTIC Supply Voltage Video Input Level Chroma Input Level Sync Input Level FBP Width Incoming FBP Current H. Output Current RGB Output Current Analog RGB Input Level OSD RGB Input Level Incoming Current to Pin 49 In TEXT input In OSD input Sync-out (Note) -- -- -- -- -- 100% white, negative sync Pin 3, pin 17 Pin 8, pin 38, pin 41 DESCRIPTION MIN 8.50 4.75 0.9 0.9 0.9 11 -- -- -- -- 0.7 -- -- TYP. 9.0 5.0 1.0 1.0 1.0 12 -- 1.0 1.0 0.7 1.0 4.2 0.5 MAX 9.25 5.25 1.1 1.1 2.2 13 1.5 2.0 2.0 0.8 1.3 5.0 1.0 mA V s mA Vp-p UNIT V
Note:
The threshold of horizontal AFC2 detection is set H.VCC-2Vf (Vf0.75V). Confirming the power supply voltage, determine the high level of FBP.
ELECTRICAL CHARACTERISTIC CURRENT CONSUMPTION
PIN No. 3 8 17 38 41 CHARACTERISTIC H.VCC (9V) VDD (5V) RGB VCC (9V) Fsc VCC (5V) Y / C VCC (9V)
(Unless otherwise specified, H, RGB VCC = 9V, VDD, Fsc VDD, Y / C VCC = 5V, Ta = 25C)
SYMBOL ICC1 ICC2 ICC3 ICC4 ICC5 TEST CIRCUIT -- -- -- -- -- MIN 16.0 8.8 25.0 6.8 80 TYP. 19.0 11.0 31.5 8.5 100 MAX 23.5 14.0 39.0 11.0 130 mA UNIT
20
2004-05-24
TB1227CNG
TERMINAL VOLTAGE
PIN No. 16 18 19 20 21 22 23 24 25 28 31 33 34 35 36 37 40 42 50 ABCL OSD R Input OSD G Input OSD B Input Digital Ys Analog Ys Analog R Input Analog G Input Analog B Input DAC Y2 Input B-Y Input R-Y Input R-Y Output B-Y Output Y1 Output 16.2MHz X'tal Oscillation Chroma Input V-Sepa. PIN NAME SYMBOL V16 V18 V19 V20 V21 V22 V23 V24 V25 V28 V31 V33 V34 V35 V36 V37 V40 V42 V50 TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- MIN 5.9 -- -- -- -- -- 4.2 4.2 4.2 1.7 1.7 2.2 2.2 1.5 1.5 1.9 3.6 2.0 5.4 TYP. 6.4 0 0 0 0 0 4.6 4.6 4.6 2.0 2.0 2.5 2.5 1.9 1.9 2.3 4.1 2.4 5.9 MAX 6.9 0.3 0.3 0.3 0.3 0.3 5.0 5.0 5.0 2.3 2.3 2.8 2.8 2.3 2.3 2.7 4.6 2.8 6.4 UNIT V V V V V V V V V V V V V V V V V V V
21
2004-05-24
TB1227CNG
AC CHARACTERISTIC Video section
CHARACTERISTIC Y Input Pedestal Clamping Voltage Chroma Trap Frequency Chroma Trap Attenuation (3.58MHz) (4.43MHz) (SECAM) Y Correction Point Y Correction Curve APL Terminal Output Impedance DC Transmission Compensation Amplifier Gain Maximum Gain of Black Expansion Amplifier SYMBOL VYclp ftr3 ftr4 Gtr3a Gtr3f Gtr4 Gtrs p c Zo44 Adrmax Adrcnt Ake VBS9MX VBS9CT Black Expansion Start Point VBS9MN VBS2MX VBS2CT VBS2MN Black Peak Detection Period (Horizontal) (Vertical) Picture Quality Control Peaking Frequency TbpH TbpV fp25 fp31 fp42 GS25MX Picture Quality Control Maximum Characteristic GS31MX GS42MX GS25MN Picture Quality Control Minimum Characteristic GS31MN GS42MN GS25CT Picture Quality Control Center Characteristic Y Signal Gain Y Signal Frequency Characteristic Y Signal Maximum Input Range GS31CT GS42CT Gy Gfy Vyd TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (Note Y17) (Note Y18) (Note Y19) (Note Y16) (Note Y15) (Note Y14) (Note Y13) (Note Y11) TEST CONDITION (Note Y1) (Note Y2) MIN 2.0 3.429 4.203 20 20 18 90 -2.6 15 0.11 0.44 1.20 65 55 48 35 25 19 15 33 1.5 1.9 3.0 12.0 12.0 10.6 -22.0 -22.0 -19.5 6.0 6.0 4.6 -1.0 -6.5 0.9 TYP. 2.2 3.58 4.43 26 26 26 95 -2.0 20 0.13 0.06 1.5 77.5 62.5 55.5 42.5 31.5 25.5 16 34 2.5 3.1 4.2 14.5 14.5 13.5 -19.5 -19.5 -16.5 8.5 8.5 7.5 0 0 1.2 MAX 2.4 3.679 4.633 52 52 52 99 -1.3 25 0.15 0.08 1.65 80 70 63 50 38 32 17 35 3.4 4.3 5.4 17.0 17.0 16.4 -17.0 -17.0 -13.5 11.0 11.0 10.4 1.6 1.0 1.5 V dB MHz s H IRE times -- dB k dB UNIT V MHz
(Note Y3) (Note Y4) (Note Y5) (Note Y6) (Note Y7) (Note Y8) (Note Y9) (Note Y10)
(Note Y12)
22
2004-05-24
TB1227CNG
Chroma section
CHARACTERISTIC SYMBOL 3NeAT 3NF1T ACC Characteristic 3NAT fo = 3.58 3NeAE 3NF1E 3NAE 4NeAT 4NF1T fo = 4.43 4NAT 4NeAE 4NF1E 4NAE 3Nfo0 Band Pass Filter Characteristic fo = 3.58 3Nfo500 3Nfo600 3Nfo700 4Nfo0 fo = 4.43 4Nfo500 4Nfo600 4Nfo700 fo0 Band Pass Filter, -3dB Band Characteristic fo = 3.58 fo500 fo600 fo700 fo0 fo = 4.43 fo500 fo600 fo700 Q1 Band Pass Filter, Q Characteristic Check fo = 3.58 Q1.5 Q2.0 Q2.5 Q1 fo = 4.43 Q1.5 Q2.0 Q2.5 TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (Note C4) -- -- 1.64 -- -- -- 2.07 -- 3.58 2.39 1.79 1.43 4.43 2.95 2.22 1.77 -- -- 1.94 -- -- -- 2.37 -- (Note C3) 2.07 2.22 2.37 1.64 1.79 1.94 MHz (Note C2) (Note C1) TEST CONDITION MIN 30 68 0.9 18 71 0.9 18 71 0.9 18 71 0.9 3.43 3.93 4.03 4.13 4.28 4.78 4.88 4.98 TYP. 35 85 1.0 35 85 1.0 35 85 1.0 35 85 1.0 3.579 4.079 4.179 4.279 4.433 4.933 5.033 5.133 MAX 90 105 1.1 -- 102 1.1 -- 102 1.1 -- 102 1.1 3.73 4.23 4.33 4.43 4.58 4.58 5.18 5.28 times mVp-p times UNIT mVp-p
23
2004-05-24
TB1227CNG
CHARACTERISTIC SYMBOL fo0 1 / 2 fc Trap Characteristic fo500 fo = 3.58 fo600 fo700 fo0 fo = 4.43 fo500 fo600 fo700 3N1 Tint Control Range (fo = 600kHz) 3N2 4N1 4N2 Tint Control Variable Range (fo = 600kHz) 3NT 4NT 3TTin 3ETin Tint Control Characteristic 3NTin 4TTin 4ETin 4NTin 4.433PH APC Lead-In Range 4.433PL (Lead-In Range) 3.579PH 3.579PL 4.433HH (Variable Range) 4.433HL 3.579HH 3.579HL 3.583 APC Control Sensitivity 4.433 M-PALM N-PALN TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (Note C10) (Note C9) 73 350 -350 350 -350 400 -400 400 -400 1.50 1.70 1.50 80 500 -500 500 -500 500 -500 500 -500 2.2 2.4 2.2 87 1500 -1500 1700 -1700 1100 -1100 1100 -1100 2.90 3.10 2.90 -- Hz Step (Note C8) 73 39 80 40 87 47 Step bit (Note C7) 70.0 90.0 110.0 (Note C6) (Note C5) TEST CONDITION MIN 1.45 1.70 1.75 1.80 1.85 2.00 2.05 2.10 35.0 -55.0 35.0 TYP. 1.60 1.85 1.90 1.95 2.00 2.15 2.20 2.25 45.0 -45.0 45.0 MAX 1.75 2.00 2.06 2.10 2.15 2.30 2.35 2.40 55.0 -35.0 55.0 MHz UNIT
39
40
47
bit
24
2004-05-24
TB1227CNG
CHARACTERISTIC SYMBOL 3N-VTK1 3N-VTC1 3N-VTK2 3N-VTC2 4N-VTK1 4N-VTC1 4N-VTK2 4N-VTC2 4P-VTK1 Killer Operation Input Level 4P-VTC1 4P-VTK2 4P-VTC2 MP-VTK1 MP-VTC1 MP-VTK2 MP-VTC2 NP-VTK1 NP-VTC1 NP-VTK2 NP-VTC2 3NeB-Y 3NeR-Y Color Difference Output (Rainbow Color Bar) 4NeB-Y 4NeR-Y 4PeB-Y 4PeR-Y (75% Color Bar) 4Peb-y 4Per-y 3NGR / B Demodulation Relative Amplitude 4NGR / B 4PGR / B 3NR-B Demodulation Relative Phase 4NR-B 4PR-B 3N-SCB Demodulation Output Residual Carrier 3N-SCR 4N-SCB 4N-SCR TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (Note C15) 0 5 15 mVp-p (Note C14) (Note C13) (Note C12) (Note C11) TEST CONDITION MIN 1.8 2.2 2.5 3.2 1.8 2.2 2.5 3.2 1.8 2.2 2.5 3.2 1.8 2.2 2.5 3.2 1.8 2.2 2.5 3.2 320 240 320 240 360 200 540 430 0.69 0.70 0.49 85 87 85 TYP. 2.5 3.2 3.6 4.5 2.5 3.2 3.6 4.5 2.5 3.2 3.6 4.5 2.5 3.2 3.6 4.5 2.5 3.2 3.6 4.5 380 290 380 290 430 240 650 510 0.77 0.77 0.56 93 93 90 MAX 3.2 4.0 4.5 5.6 3.2 4.0 4.5 5.6 3.2 4.0 4.5 5.6 3.2 4.0 4.5 5.6 3.2 4.0 4.5 5.6 460 350 460 350 520 290 780 610 0.86 0.85 0.64 100 99 95 times mVp-p UNIT
25
2004-05-24
TB1227CNG
TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (Note C21) (Note C20) (Note C18) (Note C19) (Note C17) -1.20 -2.30 0.60 -2.0 3.0 -100 -125 -140 420 2.6 1.6 -0.9 -1.7 0.8 0 3.2 50 25 10 500 2.9 1.9 -0.60 -1.55 1.20 2.0 3.4 200 175 160 580 3.2 2.2 mVp-p Hz kHz V dB (Note C16) 0 10 30 mVp-p
CHARACTERISTIC
SYMBOL 3N-HCB
TEST CONDITION
MIN
TYP.
MAX
UNIT
Demodulation Output Residual Higher Harmonic
3N-HCR 4N-HCB 4N-HCR B-Y - 1dB
Color Difference Output ATT Check
B-Y - 2dB B-Y+1dB
16.2MHz Oscillation Frequency 16.2MHz Oscillation Start Voltage fsc Free-Run Frequency (3.58M) (4.43M) (M-PAL) (N-PAL) fsc Output Amplitude
foF VFon1 3fr 4fr Mfr Nfr 4.43e27 3.58e27 3.58eV27 0th V27
fsc Output DC Voltage
V
DEF section
CHARACTERISTIC H. Reference Frequency H. Reference Oscillation Start Voltage H. Output Frequency 1 H. Output Frequency 2 H. Output Duty 1 H. Output Duty 2 H. Output Duty Switching Voltage 1 H. Output Voltage H. Output Oscillation Start Voltage H. FBP Phase H. Picture Position, Maximum H. Picture Position, Minimum H. Picture Position Control Range SYMBOL FHVCO VSHVCO fH1 fH2 H1 H2 V5-1 VHH VHL VHS FBP HSFTmax HSFTmin HSFT TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- TEST CONDITION (Note DH1) (Note DH2) (Note DH3) (Note DH4) (Note DH5) (Note DH6) (Note DH7) (Note DH8) (Note DH9) (Note DH10) (Note DH11) (Note DH12) (Note DH13) MIN 5.95 2.3 15.5 15.62 39 35 1.2 4.5 -- -- 6.2 17.7 12.4 4.5 TYP. 6.0 2.6 15.625 15.734 41 37 1.5 5.0 -- 5.0 6.9 18.4 13.1 5.3 MAX 6.10 2.9 15.72 15.84 43 39 1.8 5.5 0.5 -- 7.6 19.1 13.8 6.1 s V UNIT MHz V kHz
%
26
2004-05-24
TB1227CNG
CHARACTERISTIC H. Distortion Correction Control Range H. BLK Phase H. BLK Width, Minimum H. BLK Width, Maximum P / N-GP Start Phase 1 P / N-GP Start Phase 2 P / N-GP Gate Width 1 P / N-GP Gate Width 2 SECAM-GP Start Phase 1 SECAM-GP Start Phase 2 SECAM-GP Gate Width 1 SECAM-GP Gate Width 2 Noise Detection Level 1 Noise Detection Level 2 Noise Detection Level 3 Noise Detection Level 4 V. Ramp Amplitude V. NF Maximum Amplitude V. NF Minimum Amplitude V. Amplification Degree V. Amplifier Max. Output V. Amplifier Min. Output V. S-Curve Correction, Max. Correction Quantity V. Reverse S-Curve Correction, Max. Correction Quantity V. Linearity Max. Correction Quantity SYMBOL HCC BLK BLKmin BLKmax SPGP1 SPGP2 PGPW1 PGPW2 SSGP1 SSGP2 SGPW1 SGPW2 NL1 NL2 NL3 NL4 Vramp VNFmax VNFmin GVA Vvmax Vvmin VS VSR VL TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- TEST CONDITION (Note DH14) (Note DH15) (Note DH16) (Note DH17) (Note DH18) (Note DH19) (Note DH20) (Note DH21) (Note DH22) (Note DH23) (Note DH24) (Note DH25) (Note DH26) (Note DH27) (Note DH28) (Note DH29) (Note DV1) (Note DV2) (Note DV3) (Note DV4) (Note DV5) (Note DV6) (Note DV7) 9 (Note DV8) (Note DV9) 9 20 31 11 13 % MIN 0.5 6.2 9.8 13.2 3.45 3.95 1.65 1.70 5.2 5.7 1.9 1.9 0.12 0.10 0.05 0.025 1.62 3.2 0.8 20 5.0 0 TYP. 1.0 6.9 10.5 14.0 3.68 4.18 1.75 1.75 5.4 6.0 2.0 2.0 0.20 0.15 0.10 0.05 2.0 3.5 1.0 26 -- -- MAX 1.5 7.6 11.3 14.7 3.90 4.40 1.85 1.85 5.6 6.2 2.1 2.1 0.28 0.20 0.15 0.08 2.08 3.8 1.2 32 -- 1.5 dB V Vp-p Vp-p s UNIT s / V
27
2004-05-24
TB1227CNG
TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (Note DV20)
CHARACTERISTIC AFC-MASK Start Phase AFC-MASK Stop Phase VNFB phase V. Output Maximum Phase V. Output Minimum Phase V. Output Phase Variable Range 50 System VBLK Start Phase 50 System VBLK Stop Phase 60 System VBLK Start Phase 60 System VBLK Stop Phase Pin 56 VBLK Max Voltage Pin 56 VBLK Min Voltage V. Lead-In Range 1
SYMBOL AFCf AFCe VNFB Vmax Vmin V V50BLKf V50BLKe V60BLKf V60BLKe V56H V56L VAcaL VAcaH V60caL V60caH SWVB SWP STWVB STWP V51 V51Max V51Min V28H V28L
TEST CONDITION (Note DV10) (Note DV11) (Note DV12) (Note DV13) (Note DV14) (Note DV15) (Note DV16) (Note DV17) (Note DV18) (Note DV19)
MIN 2.6 4.4 0.45 7.3 0.5 6.3 0.4 20 0.4 15 4.7 0 -- -- -- -- 9
TYP. 3.2 5.0 0.75 8.0 1.0 7.0 0.55 23 0.55 18 5.0 -- 232.5 344.5 232.5 294.5 --
MAX 3.8 5.6 1.05 8.7 1.5 7.7 0.7 26 0.7 21 5.3 0.3 -- -- -- -- 88
UNIT
H
V
Hz
V. Lead-In Range 2 W-VBLK Start Phase W-PMUTE Start Phase W-VBLK Stop Phase W-PMUTE Stop Phase V Centering Center Voltage V Centering Max Voltage V Centering Min Voltage Pin 28 DAC Output Voltage (High) Pin 28 DAC Output Voltage (Low)
(Note DV21) (Note DV22) (Note DV23) (Note DV24) (Note DV25) (Note DV26) (Note DV27) (Note DV28)
H 10 -- -- -- 4.0 -- -- 4.55 6.30 2.75 4.5 0 120 -- -- -- 5.0 0.1 V
28
2004-05-24
TB1227CNG
1H DL section
CHARACTERISTIC SYMBOL VNBD VNRD VPBD VPRD VSBD VSRD GHB1 GHR1 GHB2 GHR2 GBY1 GRY1 GBY2 GRY2 GBYD GRYD VBD VRD BDt RDt Bomin Bomax Romin Romax Bo1 Ro1 GNB GNR TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (Note H12) (Note H11) TEST CONDITION MIN TYP. MAX UNIT
1HDL Dynamic Range, Direct
(Note H1)
0.8
1.2
--
1HDL Dynamic Range, Delay
(Note H2)
0.8
1.2
--
V
1HDL Dynamic Range, Direct+Delay
(Note H3)
0.9
1.2
--
Frequency Characteristic, Direct
(Note H4)
-3.0
-2.0
0.5
Frequency Characteristic, Delay
(Note H5)
-8.2
-6.5
-4.3
AC Gain, Direct
(Note H6)
-2.0
-0.5
2.0
dB
AC Gain, Delay
(Note H7)
-2.4
-0.5
1.1
Direct-Delay AC Gain Difference
(Note H8)
-1.0
0.0
1.0
Color Difference Output DC Stepping
(Note H9)
-5
0.0
5
mV
1H Delay Quantity Color Difference Output DC-Offset Control Bus-Min Data Bus-Max Data Color Difference Output DC-Offset Control / Min. Control Quantity NTSC Mode Gain / NTSC-COM Gain
(Note H10)
63.7 22 -55 22 -55 1 -0.90 0.92
64.0 36 -36 36 -36 4 0 0
64.4 55 -22 55 -22 8 1.20 1.58
s
mV
(Note H13)
dB
29
2004-05-24
TB1227CNG
CHARACTERISTIC SYMBOL Vcp31 Y Color Difference Clamping Voltage Vcp33 Vcp34 Vc12mx Vc12mn D12c80 Vc13mx Contrast Control Characteristic Vc13mn D13c80 Vc14mx Vc14mn D14c80 Gr AC Gain Gg Gb Frequency Characteristic Y Sub-Contrast Control Characteristic Y2 Input Range Gf Vscnt Vy2d Vn12mx Vn12mn D12n80 Vn13mx Unicolor Control Characteristic Vn13mn D13n80 Vn14mx Vn14mn D14n80 V13un Relative Amplitude (NTSC) Mnr-b Mng-b nr-b ng-b Mpr-b Mpg-b pr-b pg-b TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (Note T8) (Note T7) (Note T4) (Note T5) (Note T6) -- 3.0 0.7 1.6 0.17 0.67 1.6 0.17 0.67 1.6 0.17 0.67 16 0.70 0.30 87 235 0.50 0.30 86 232 -1.0 6.0 -- 2.3 0.35 1.16 2.3 0.35 1.16 2.3 0.26 1.16 20 0.77 0.34 93 241.5 0.56 0.34 90 237 -3.0 9.0 -- 4.3 0.42 1.68 4.3 0.42 1.68 4.3 0.42 1.68 24 0.85 0.38 99 248 0.63 0.38 94 242 dB times V dB (Note T3) 2.8 4.0 5.2 times (Note T2) (Note T1) TEST CONDITION MIN 1.7 2.2 2.50 0.21 0.83 2.50 0.21 0.83 2.50 0.21 0.83 TYP. 2.0 2.5 3.00 0.31 1.24 3.00 0.31 1.24 3.00 0.31 1.24 MAX 2.3 2.8 3.50 0.47 1.86 3.50 0.47 1.86 3.50 0.47 1.86 V UNIT
Relative Phase (NTSC)
(Note T9)
Relative Amplitude (PAL)
(Note T10)
times
Relative Phase (PAL)
(Note T11)
30
2004-05-24
TB1227CNG
CHARACTERISTIC SYMBOL Vcmx Color Control Characteristic ecol col ecr Color Control Characteristic, Residual Color Chroma Input Range Brightness Control Characteristic Brightness Center Voltage Brightness Data Sensitivity RGB Output Voltage Axes Difference White Peak Limit Level Cutoff Control Characteristic Cutoff Center Level Cutoff Variable Range Drive Variable Range DC Regeneration RGB Output S / N Ratio Blanking Pulse Output Level ecg ecb Vcr Vbrmx Vbrmn Vbcnt Vbrt Vbct Vwpl Vcomx Vcomn Vcoct Dcut DR+ DR- TDC SNo Vv Vh tdon tdoff Vmn Vmx Vthtl G3htl3 G6htl3 Vttxl Vtxl13 Vmt13 Vtosl Vmos13 Vtxtg Vosdg TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (Note T14) (Note T15) (Note T16) (Note T17) (Note T18) (Note T19) (Note T20) (Note T21) (Note T22) (Note T23) (Note T24) (Note T25) (Note T26) 700 3.05 1.05 2.05 6.3 -150 2.63 2.55 1.55 2.05 2.3 2.7 -6.5 0 -- 0.7 0.05 0.05 0.8 6.85 0.7 -4.5 -7.5 1.8 -0.45 1.15 2.8 1.75 0.7 1.7 -- 3.45 1.35 2.30 7.8 0 3.25 2.75 1.75 2.3 3.9 3.85 -5.6 50 -50 1.0 0.25 0.35 1.0 7.15 0.9 -3.0 -6.0 2.0 -0.25 1.4 3.0 2.15 1.0 2.0 -- 3.85 1.65 2.55 9.4 150 3.75 2.95 1.95 2.55 5.5 5.0 -4.7 100 -45 1.3 0.45 0.85 1.2 7.45 1.1 -1.5 -4.5 2.2 -0.05 1.85 3.2 2.55 1.3 2.3 V dB V mV dB mV dB V V mV V (Note T13) 0 12.5 25 mVp-p (Note T12) TEST CONDITION MIN 1.50 80 142 TYP. 1.80 128 192 MAX 2.10 160 242 UNIT Vp-p step
Blanking Pulse Delay Time RGB Min. Output Level RGB Max. Output Level Halftone Ys Level Halftone Gain 1 Halftone Gain 2 Text ON Ys Level Text / OSD Output, Low Level Text RGB Output, High Level OSD Ys ON Level OSD RGB Output, High Level Text Input Threshold Level OSD Input Threshold Level
(Note T27) (Note T28) (Note T29) (Note T30) (Note T31) (Note T32) (Note T33) (Note T34) (Note T35) (Note T36) (Note T37) (Note T38) (Note T39)
s
31
2004-05-24
TB1227CNG
CHARACTERISTIC SYMBOL Rosr OSD Mode Switching Rise-Up Time Rosg Rosb tPRosr OSD Mode Switching Rise-Up Transfer Time OSD Mode Switching Rise-Up Transfer Time, 3 Axes Difference tPRosg tPRosb tPRos Fosr OSD Mode Switching Breaking Time Fosg Fosb tPFosr OSD Mode Switching Breaking Transfer Time OSD Mode Switching Breaking Transfer Time, 3 Axes Difference tPFosg tPFosb tFRos Roshr OSD Hi DC Switching Rise-Up Time Roshg Roshb tPRohr OSD Hi DC Switching Rise-Up Transfer Time OSD Hi DC Switching Rise-Up Transfer Time, 3 Axes Difference tPRohg tPRohb tPRoh Foshr OSD Hi DC Switching Breaking Time Foshg Foshb tPFohr OSD Hi DC Switching Breaking Transfer Time OSD Hi DC Switching Breaking Transfer Time, 3 Axes Difference tPFohg tPFohb tPFoh TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (Note T51) -- 0 40 ns (Note T50) -- 20 100 ns (Note T49) -- 20 100 ns (Note T48) -- 0 40 ns (Note T47) -- 20 100 ns (Note T46) -- 20 100 ns (Note T45) -- 20 40 ns (Note T44) -- 30 100 ns (Note T43) -- 30 100 ns (Note T42) -- 15 40 ns (Note T41) -- 40 100 ns (Note T40) -- 40 100 ns TEST CONDITION MIN TYP. MAX UNIT
32
2004-05-24
TB1227CNG
CHARACTERISTIC SYMBOL Vc12mx Vc12mn D12c80 Vc13mx RGB Contrast Control Characteristic Vc13mn D13c80 Vc14mx Vc14mn D14c80 Analog RGB AC Gain Analog RGB Frequency Characteristic Analog RGB Dynamic Range RGB Brightness Control Characteristic RGB Brightness Center Voltage RGB Brightness Data Sensitivity Analog RGB Mode ON Voltage Gag Gfg Dr24 Vbrmxg Vbrmng Vbcntg Vbrtg Vanath Ranr Analog RGB Switching Rise-Up Time Rang Ranb tPRanr Analog RGB Switching Rise-Up Transfer Time Analog RGB Switching Rise-Up Transfer Time, 3 Axes Difference Analog RGB Switching Breaking Time tPRang tPRanb tPRas Fanr Fang Fanb tPFanr Analog RGB Switching Breaking Transfer Time Analog RGB Switching Breaking Transfer Time, 3 Axes Difference tPFang tPFanb tPFas TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (Note T65) -- 0 40 (Note T64) -- 30 100 (Note T63) -- 50 100 (Note T62) -- 0 40 ns (Note T61) -- 20 100 (Note T60) -- 50 100 (Note T53) (Note T54) (Note T55) (Note T56) (Note T57) (Note T58) (Note T59) (Note T52) TEST CONDITION MIN 2.10 0.21 0.84 2.10 0.21 0.84 2.10 0.21 0.84 4.0 -0.5 0.5 3.05 1.05 2.05 6.3 0.8 TYP. 2.5 0.31 1.25 2.5 0.31 1.25 2.5 0.31 1.25 5.1 -1.75 -- 3.25 1.25 2.25 7.8 1.0 MAX 2.97 0.47 1.87 2.97 0.47 1.87 2.97 0.47 1.87 6.3 -3.0 -- 3.45 1.45 2.45 9.4 1.2 mV V V times dB V UNIT
33
2004-05-24
TB1227CNG
CHARACTERISTIC SYMBOL Ranhr Analog RGB Hi Switching Rise-Up Time Ranhg Ranhb tPRahr Analog RGB Hi Switching Rise-Up Transfer Time Analog RGB Hi Switching Rise-Up Transfer Time, 3 Axes Difference Analog RGB Hi Switching Breaking Time tPRahg tPRahb tPRah tFanhr tFanhg tFanhb tPFahr Analog RGB Hi Switching Breaking Transfer Time Analog RGB Hi Switching Breaking Transfer Time, 3 Axes Difference TV-Analog RGB Crosstalk Analog RGB-TV Crosstalk tPFahg tPFahb tPFah Crtvag Crantg Vablpl ABL Point Characteristic Vablpc Vablph ACL Characteristic Vcal Vabll ABL Gain Characteristic Vablc Vablh TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (Note T76) (Note T75) (Note T74) (Note T71) (Note T72) (Note T73) -- -80 5.5 5.7 5.9 -19 -0.3 -1.3 -2.3 0 -50 5.6 5.8 6.0 -16 0 -1.0 -2.0 40 -40 5.7 5.9 6.1 -13 0.3 -0.7 -1.7 V dB V dB (Note T70) -- 20 100 (Note T69) -- 50 100 (Note T68) -- 0 40 ns (Note T67) -- 20 100 (Note T66) -- 50 100 TEST CONDITION MIN TYP. MAX UNIT
34
2004-05-24
TB1227CNG
CHARACTERISTIC Bell Monitor Output Amplitude Bell Filter fo Bell Filter fo Variable Range Bell Filter Q Color Difference Output Amplitude Color Difference Relative Amplitude Color Difference Attenuation Quantity SYMBOL embo foB-C foB-L foB-H QBEL VBS VRS R / B-S SATTB SATTR SNB-S SBR-S LinB LinR trfB trfR trfBw trfRw eSK eSC eSFK eSFC eSWK eSWC TEST CIRCUIT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- TEST CONDITION (Note S1) (Note S2) (Note S3) (Note S4) (Note S5) (Note S6) (Note S7) MIN 200 -23 -69 69 14 0.50 0.39 0.70 -1.50 TYP. 300 0 -46 92 16 -- -- -- -- MAX 400 23 -23 115 18 0.91 0.73 0.90 -0.50 dB (Note S8) -85 75 85 -- -- -- -- 1.3 -25 117 120 1.5 s (Note S11) -- 1.1 1.3 -- Vp-p -- kHz UNIT mVp-p
Color Difference S / N Ratio
Linearity Rising-Fall Time (Standard De-Emphasis) Rising-Fall Time (Wide-Band De-Emphasis) Killer Operation Input Level (Standard Setting) Killer Operation Input Level (VID ON) Killer Operation Input Level (Low Sensitivity, VID OFF)
(Note S9)
%
(Note S10)
(Note S12) 0.5 (Note S13) 1 2 mVp-p
(Note S14)
0.7
1.5
3
35
2004-05-24
TB1227CNG
TEST CONDITION VIDEO SECTION
NOTE ITEM S39 Y1 Y Input Pedestal Clamping Voltage A TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S42 S44 S45 S51 04H 08H 0FH 10H 13H 14H (1) C B A A 20H 04H 80H 00H BAH 03H (2) (3) (1) (2) (3) Y2 Chroma Trap Frequency A B (4) (5) Short circuit pin 45 (Y1 IN) in AC coupling. Input synchronizing signal to pin 51 (SYNC IN). Measure DC voltage at pin 45, and express the measurement result as VYcIp. Set the 358 TRAP mode to AUTO by setting the bus data. Set the bus data so that chroma trap is ON and f0 is 0. Input TG7 sine wave signal whose frequency is 3.58MHz (NTSC) and video amplitude is 0.5V to pin 45 (Y1 IN). While observing waveform at pin 37 (Y1out), find a frequency with minimum amplitude of the waveform. The obtained frequency shall be expressed as fIr3. Change the frequency of the signal 1 to 4.43MHz (PAL) and perform the same measurement as the preceding step 4. The obtained frequency shall be expressed as fIr4. Set the 358 TRAP mode to AUTO by setting bus data. Set the bus data so that Q of chroma trap is 1.5. Set the bus data so that f0 of chroma trap is 0. Input TG7 sine wave signal whose frequency is 3.58MHz (NTSC) and video amplitude is 0.5V to pin 45 (Y1 IN). While turning on and off the chroma trap by controlling the bus, measure chroma amplitude (VTon) at pin 37 (Y1out) with the chroma trap being turned on and measure chroma amplitude (VToff) at pin 37 (Y1out) with the chroma trap being turned off. Gtr = 20og (VToff / VTon) Change f0 of the chroma trap to -100kHz, -50kHz, 0 and +50kHz, and perform the same measurement as the preceding steps 4 and 5 with the respective f0 settings. Change Q of the chroma trap t 1, 1.5, 2 and 2.5, and perform the same measurement as the preceding steps 4 through 6. The maximum Gtr shall be expressed as Gtr3a. Set the 358 TRAP mode to the forces 358 mode by setting bus data, and perform the same measurement as the preceding steps 2 through 7 (Gtr3f).
(1) (2) (3) (4) (5) Y3 Chroma Trap Attenuation (3.58MHz) Vari- Vari- Variable able able (6) (7)
(8)
36
2004-05-24
TB1227CNG
NOTE ITEM S39 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S42 S44 S45 S51 04H 08H 0FH 10H 13H 14H (1) (2) Y4 Chroma Trap Attenuation (4.43MHz) A C A B A 20H 04H Vari- Vari- Vari03H able able able (4) (3) Set the 358 TRAP mode to AUTO by setting bus data. Set the bus data so that Q of chroma trap is 1.5. Set the bus data so that f0 of chroma trap is 0. Input TG7 sine wave signal whose frequency is 4.43MHz and video amplitude is 0.5V to pin 45 (Y1 IN). Perform the same measurement as the steps 5 through 7 of the preceding item Y3. The measurement result shall be expressed as Gtr4. Set the bus data so that the 358 TRAP mode is AUTO and the Dtrap is ON. Set the bus data so that Q of chroma trap is 1.5. Set the bus data so that f0 of chroma trap is 0. Input SECAM signal whose amplitude in video period is 0.5V to pin 45 (Y1 IN). Perform the same measurement as the steps 5 through 7 of the preceding item Y3 to find the maximum attenuation (Gtrs). Connect the power supply to pin 45 (Y1 IN). Turn off Y by setting the bus data. While raising the supply voltage from the level measured in the preceding item Y1, measure voltage change characteristic of Y1 output at pin 37. Set the bus data to turn on Y. Perform the same measurement as the above step 3. Find a gamma () point from the measurement results of the steps 3 and 5. p = Vr/0.7V
(5) (1) (2) Y5 Chroma Trap Attenuation (SECAM) (3) (4) (5) (1) (2) (3)
Y6
Y Correction Point

Vari80H able
00H BAH
(4) (5) (6)
Y7
Y Correction Curve


From the measurement in the above item Y6, find gain of the portion that the correction has an effect on.
37
2004-05-24
TB1227CNG
NOTE ITEM S39 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S42 S44 S45 S51 04H 08H 0FH 10H 13H 14H (1) (2) Y8 APL Terminal Output Impedance (3) A C B A A 20H 04H 80H 00H BAH 03H (4) Short circuit pin 45 (Y1 IN) in AC coupling. Input synchronizing signal to pin 51. Connect power supply and an ammeter to the APL of pin 44 as shown in the figure, and adjust the power supply so that the ammeter reads 0 (zero). Raise the voltage at pin 44 by 0.1V, and measure the current (Iin) at that time. Zo44 () = 0.1V/Iin (A) Set the bus data so that DC transmission factor correction gain is maximum. In the condition of the Note Y8, observe Y1out waveform at pin 37 and measure voltage change in the video period. Set the bus data so that DC transmission factor correction gain is centered, and measure voltage in the same manner as the above step 2.
(1) (2) (3) Y9 DC Transmission Compensation Amplifier Gain Variable
Adr = (V2 - V1)/0.1V/Y1 gain (1) (2) Y10 Maximum Gain of Black Expansion Amplifier A B 00H E3H (3) (4) Set the bus data so that black expansion is on and black expansion point is maximum. Input TG7 sine wave signal whose frequency is 500kHz and video amplitude is 0.1V to pin 45 (Y1 IN). While impressing 1.0V to pin 39 (Black Peak Hold), measure amplitude (Va) of Y1out signal at pin 37. While impressing 3.5V to pin 39 (Black Peak Hold), measure amplitude (Vb) of Y1out signal at pin 37. Akc = Va/Vb
38
2004-05-24
TB1227CNG
NOTE ITEM S39 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S42 S44 S45 S51 04H 08H 0FH 10H 13H 14H (1) (2) (3) (4) Set the bus data so that black expansion is on and black expansion point is maximum. Supply 1.0V to pin 39 (Black Peak Hold). Supply 2.9V to the APL of pin 44. Connect the power supply to pin 45 (Y1 IN). While raising the supply voltage from the level measured in the preceding item Y1, measure voltage change at pin 37 (Y1out). Set the bus data to center the black expansion point, and perform the same measurement as the above steps 2 through 4. Set the black expansion point to the minimum by setting the bus data, and perform the same measurement as the above steps 2 through 4. While supplying 2.2V to the APL of pin 44, perform the same measurement as the above step 4 with the black expansion point set to maximum, center and minimum.
Y11
Black Expansion Start Point
A
C
A
A
A
20H 04H 00H
00H BAH
Variable
(5)
(6) (7)
In the condition of the Note Y1, measure waveform at pin 39 (Black Peak Hold). Black Peak Detection Period (Horizontal) Black Peak Detection Period (Vertical)
Y12
B


E3H
39
2004-05-24
TB1227CNG
NOTE ITEM S39 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S42 S44 S45 S51 04H 08H 0FH 10H 13H 14H (1) (2) Picture Quality Control Peaking Frequency (3) Variable (4) (5) Set the bus data so that picture quality control frequency is 2.5MHz. Input TG7 sine wave (sweeper) signal whose video level is 0.1V to pin 45 (Y1 IN) and pin 51 (Sync. IN). Maximize the picture quality control data. While observing Y1out of pin 37, find an SG frequency as the waveform amplitude is maximum (fp25). Set the bus data so that picture quality control frequency is 3.1MHz and 4.2MHz, and perform the same measurement as the above steps 2 through 4 at the respective frequencies (fp31, fp42). Input TG7 sine wave (sweeper) signal whose video level is 0.1V to pin 45 (Y1 IN) and pin 51 (Sync. IN). Set the picture quality control data to maximum. Set the picture quality control frequency is 2.5MHz by setting the bus data. Measure amplitude (V100k) of the output of pin 37 (Y1 OUT) as the SG frequency is 100kHz, and the amplitude (Vp25) of the same as the SG frequency is 2.5MHz. GS25MX = 20og (Vp25 / V100k) Set the picture quality control frequency data to 3.1MHz by setting the bus data. Measure amplitude (V100k) of the output of pin 37 (Y1 OUT) as the SG frequency is 100kHz, and the amplitude (Vp31) of the same as the SG frequency is 3.1MHz. GS31MX = 20og (Vp31 / V100k) Set the picture quality control frequency to 4.2MHz by setting the bus data. Measure amplitude (V100k) of the output of pin 37 (Y1 OUT) as the SG frequency is 100kHz, and the amplitude (Vp42) of the same as the SG frequency is 4.2MHz. GS42MX = 20og (Vp42 / V100k)
Y13
A
C
A
B
A
3FH 04H 80H
00H BAH
(1) (2) (3) (4) Picture Quality Control Maximum Characteristic
Y14


(5) (6)
(7) (8)
40
2004-05-24
TB1227CNG
NOTE ITEM S39 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S42 S44 S45 S51 04H 08H 0FH 10H 13H 14H (1) Picture Quality Control Minimum Characteristic (2) In the condition of the Note Y14, set the picture quality control bus data to minimum. Perform the same measurement as the steps 3 through 8 of the Note Y14 to find respective gains as the picture quality control frequency is set to 2.5MHz, 3.1MHz and 4.2MHz. GS25MN = 20og (Vp25 / V100k) GS31MN = 20og (Vp31 / V100k) GS42MN = 20og (Vp42 / V100k) In the condition of the Note Y14, set the picture quality control bus data to center. Perform the same measurement as the steps 3 through 8 of the Note Y14 to find respective gains as the picture quality control frequency is set to 2.5MHz, 3.1MHz and4.2MHz. GS25CT = 20og (Vp25 / V100k) GS31CT = 20og (Vp31 / V100k) GS42CT = 20og (Vp42 / V100k) Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum. Input TG7 sine wave signal whose frequency is 100kHz and video level is 0.5V to pin 45 (Y1 IN) and pin 51 (Sync. IN). (Vyi100) Measure amplitude of Y1 output at pin 37 (Vyout). Gy = 20og (Vyout / Vyi100) Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum. Input TG7 sine wave signal whose frequency is 6MHz and video level is 0.5V to pin 45 (Y1 IN) and pin 51 (Sync. IN). (Vyi6M) Measure amplitude of Y1 output at pin 37 (Vyo6M). Gy6M = 20og (Vyo6M / Vyi6M) Find Gfy from the result of the Note Y17. Gfy = Gy6M - Gy
Y15
A
C
A
B
A
00H 04H 80H
00H BAH
Variable
(1) Picture Quality Control Center Characteristic (2) 20H
Y16
(1) Y17 Y Signal Gain 03H (2) (3) (1) (2) Y18 Y Signal Frequency Characteristic (3) (4)
41
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S42 S44 S45 S51 04H 08H 0FH 10H 13H 14H (1) Y19 Y Signal Maximum Input Range A C A B A 20H 04H 80H 00H BAH 03H (2) (3) Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum. Input TG7 sine wave signal whose frequency is 100kHz to pin 45 (Y1 IN) and pin 51 (Sync. IN). While increasing the amplitude Vyd of the signal in the video period, measure Vyd just before the waveform of Y1 output (pin 37) is distorted.
NOTE
ITEM S39
42
2004-05-24
TB1227CNG
NOTE ITEM S26 S1 S31 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE MEASURING METHOD S33 S34 S39 S42 S44 S45 S51 (1) (2) (3) (4) (5) Activate the test mode (S26-ON, Sub Add 02 ; 01h). Set as follows : band pass filter Q = 2, fo = 600kHz, crystal clock = conforming to European, Asian system. Set the gate to the normal status. Input 3N rainbow color bar signal to pin 42 (Chroma IN). When input signal to pin 42 is the same in the burst and chroma levels (10mVp-p), burst amplitude of B-Y output signal from pin 36 is expressed as eAT. When the level of input signal to pin 42 is 100mVp-p or 300mVp-p, burst amplitude of the B-Y output signal is expressed as F1T or F2T. The ratio between F1T and F2T is expressed as AT. F2T / F1T = AT Perform the same measurement in the EXT. mode (fo = 0). (eAE, F1E, AE)
C1
ACC Characteristic
ON
A
B
B
B
A
A
A
A
B
(6)
(7)
Input 4N rainbow color bar signal to pin 42 (Chroma IN), and perform the same measurement as the above-mentioned steps with 3N rainbow color bar signal input.
43
2004-05-24
TB1227CNG
NOTE ITEM S26 S1 S31 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE MEASURING METHOD S33 S34 S39 S42 S44 S45 S51 (1) (2) (3) (4) (5) (6) ON A B B B A B A A B Activate the test mode (S26-ON, Sub Add 02 ; 01h). Set as follows : band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz, gate = normal status. Input 3N composite sine wave signal (1Vp-p) to pin 42 (Chroma IN). Measure frequency characteristic of B-Y output of pin 36 and measure the peak frequency, too. Changing fo to 0, 500, 600 and 700 by the bus control and measure peak frequencies respectively with different fo. For measuring frequency characteristic as fo is 4.43, use 4.43MHz crystal clock Measure the following items in the same manner.
C2
Band Pass Filter Characteristic
44
2004-05-24
TB1227CNG
NOTE ITEM S26 S1 S31 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE MEASURING METHOD S33 S34 S39 S42 S44 S45 S51 (1) (2) (3) (4) (5) C3 Band Pass Filter, -3dB Band Characteristic ON A B B B A B A A B (6) Activate the test mode (S26-ON, Sub Add 02 ; 01h). Set as follows : band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz. Set the gate to the normal status. Input 3N composite sine wave signal (1Vp-p) to pin 42 (Chroma IN). Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency in the -3dB band. Changing fo to 0, 500, 600 and 700 by the bus control and measure peak frequencies in the -3dB band respectively with different fo.
(1) (2) (3) (4) C4 Band Pass Filter, Q Characteristic Check (5)
Activate the test mode (S26-ON, Sub Add 02 ; 01h). Set as follows : TV mode (fo = 600), Crystal mode = conforming to 3.579 / 4.43MHz, gate = normal status. Input 3N composite sine wave signal (1Vp-p) to pin 42 (Chroma IN). Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency in the -3dB band. Changing fo of the band pass filter to 0, 500, 600 and 700 by the bus control and measure peak frequencies in the -3dB band respectively with different fo.
45
2004-05-24
TB1227CNG
NOTE ITEM S26 S1 S31 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE MEASURING METHOD S33 S34 S39 S42 S44 S45 S51 (1) (2) (3) (4) C5 1 / 2 fo Trap Characteristic ON A B B B A B A A B (5) Activate the test mode (S26-ON, Sub Add 02 ; 01h). Set as follows : band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz, gate = normal status. Input 3N composite sine wave signal (1Vp-p) to pin 42 (Chroma IN). Measure frequency characteristic of B-Y output of pin 36, and measure bottom frequency. Changing fo to 0, 500, 600 and 700 by the bus control and measure bottom frequencies respectively with different fo.
46
2004-05-24
TB1227CNG
NOTE ITEM S26 S1 S31 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE MEASURING METHOD S33 S34 S39 S42 S44 S45 S51 (1) (2) (3) C6 Tint Control Sharing Range (fo = 600kHz) ON A B B B A A A A B (4) (5) Activate the test mode (S26-ON, Sub Add 02 ; 08h). Connect band pass filter (Q = 2), set crystal mode to conform to European, Asian system and set the gate to normal status. Input 3N rainbow color bar signal (100mVp-p) to pin 42 (Chroma IN). Measure phase shift of B-Y color difference output of pin 36. While shifting color phase (tint) from minimum to maximum by the bus control, measure phase change of B-Y color difference output of pin 36. On the condition that 6 bars in the center have the peak level (regarded as center of color phase), the side of 5 bars is regarded as positive direction while the side of 7 bars is regarded as negative direction when the 5 bars or the 7 bars are in the peak level. Based on this assumption,open angle toward the positive direction is expressed as 1 and that toward the negative direction is expressed as 2 as viewed from the phase center. 1 and 2 show the tint control sharing range. Tint Control Variable Range (fo = 600kHz) (6) (7) Variable range is expressed by sum of 1 sharing range and 2 sharing range. T = 1+2 While shifting color phase from minimum to maximum with the bus control, measure phase shift of B-Y color difference output of pin 36. When center 6 bars have peak level, value of color phase bus step is expressed as Tin. While shifting color phase from minimum to maximum with the bus control, measure values of color phase bus step corresponding to 10% and 90% of absolutely variable phase shift of B-Y color difference output of pin36. The range of color phase shifted by the bus control is expressed as While shifting color phase from minimum to maximum with the bus control, measure phase shift of B-Y color difference output of pin 36. When center 6 bars have peak level, value of color phase bus step is expressed as Tin (conforming to TV mode, fo = 600kHz). (9) Input 4N rainbow color bar signal to pin 42 (Chroma IN), and perform the same measurement as the 3N signal.
C7
(8)
C8
Tint Control Characteristic


47
2004-05-24
TB1227CNG
NOTE ITEM S26 S1 S31 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE MEASURING METHOD S33 S34 S39 S42 S44 S45 S51 (1) (2) (3) (4) (5) OFF C9 APC Lead-In Range ON A B B B A A C A A B (7) (8) (9) (6) Connect band pass filter (Q = 2), set to TV mode (fo = 600kHz) with X'tal clock conforming to European, Asian system. Set the gate to normal status. Input 3N CW signal of 100mVp-p to pin 42 of the chroma input terminal. While changing frequency of the CW (continuous waveform) signal, measure its frequency when B-Y color difference signal of pin 36 is colored. Input 4N CW (continuous waveform) 100mVp-p signal to pin 42 (Chroma IN). While changing frequency of the CW signal, measure frequencies when B-Y color difference output of pin 36 is colored and discolored. Find difference between the measured frequency and fc (4.433619MHz) and express the differences as fPH and fPL, which show the APC lead-in range. Variable frequency of VCXO is used to cope with lead-in of 3.582MHz / 3.575MHz PAL system. Activate the test mode (S26-ON, Sub Add 02 ; 02h). Input nothing to pin 42 (Chroma IN).
(10) While varying voltage of pin 30 (APC Filter), measure variable frequency of VCXO at pin 35 (R-Y OUT) while observing color and discoloring of R-Y color difference signal. Express difference between the high frequency (fH) and fo center as 3.582HH, and difference between the low frequency (fL) and fo center as 3.582HL. Perform the same measurement for the NP system (3.575MHz PAL). (1) (2) (3) C10 APC Control Sensitivity ON C (4) (5) Activate the test mode (S26-ON, Sub Add 02 ; 02h). Connect band pass filter as same as the Note C9. Change the X'tal mode properly to the system. Input nothing to pin 42 (Chroma IN). When V30's APC voltage 50mV is impressed to pin 30 (APC Filter) while its voltage is being varied, measure frequency change of pin 35 output signal as frH or frL and calculate sensitivity according to the following equation. b = (frH - frL) / 100
48
2004-05-24
TB1227CNG
NOTE ITEM S26 S1 S31 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE MEASURING METHOD S33 S34 S39 S42 S44 S45 S51 (1) (2) (3) (4) Connect band pass filter (Q = 2) and set to TV mode (fo = 600kHz). Set the crystal mode to conform to European, Asian system and set the gate to normal status. Input 3N color signal having 200mVp-p burst to pin 42 (Chroma IN). While attenuating chroma input signal, measure input burst amplitudes of the signal when B-Y color difference output of pin 36 is discolored and when the same signal is colored. Measured input burst amplitudes shall be expressed as 3N-VTK1 and 3N-VTC1 respectively (killer operation input level). Killer operation input level in the condition that P / N killer sensitivity is set to LOW with the bus control is expressed as 3N-VTK2 or 3N-VTC2. Perform the same measurement as the above step 4 with different inputs of 4N, 4P, MP, NP color signals having 200mVp-p burst to pin 42 (Chroma IN). (When measuring with MP / NP color signal, set the crystal system to conform to South American system.) Killer operation input level at that time is expressed as follows. Normal killer operation input level in the 4N system is expressed as 4N-VTK1, 4N-VTC1. Normal killer operation input level in the 4P system is expressed as 4P-VTK1, 4P-VTC1. Killer operation input level with low killer sensitivity is expressed as 4P-VTK2, 4P-VTC2. Normal killer operation input level in the MP system is expressed as MP-VTK2, MP-VTC2. Normal killer operation input level in the NP system is expressed as NP-VTK1, NP-VTC1. Killer operation input level with low killer sensitivity is expressed as NP-VTK2, NP-VTC2. [Reference] 3N system : 3.579545MHz NTSC 4N system : 4.433619MHz False NTSC 4P system : 4.433619MHz PAL MP system : 3.575611MHz M-PAL NP system : 3.582056MHz N-PAL
(5) (6) C11 Killer Operation Input Level OFF A B B B A A A A B (7)
49
2004-05-24
TB1227CNG
NOTE ITEM S26 S1 S31 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE MEASURING METHOD S33 S34 S39 S42 S44 S45 S51 (1) (2) (3) (4) ON A B B B A A A A B (5) Activate the test mode (S26-ON, Sub Add 02 ; 08h). Connect band pass filter (Q = 2), set to TV mode (fo = 600kHz) with 0dB attenuation. Set the crystal mode to conform to European, Asian system and set the gate to normal status. Input 3N, 4N and 4P rainbow color bar signals having 100mVp-p burst to pin 42 of the chroma input terminal one after another. Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express them as 3NeB-Y / R-Y, 4NeB-Y / R-Y and 4PeB-Y / R-Y respectively. While inputting 4P 75% color bar signal (100mVp-p burst) to pin 42 of the chroma input terminal, measure amplitudes of color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively. (Ratio of those amplitudes is expressed as 4Peb-y / r-y for checking color level of SECAM system.) Activate the test mode (S26-ON, Sub Add 02 ; 08h). Connect band pass filter (Q = 2), set to TV mode (fo = 600kHz) with 0dB attenuation. Set the crystal mode to conform to European, Asian system and set the gate to normal status. Input 3N, 4N and 4P rainbow color bar signals having 100mVp-p burst to pin 42 of the chroma input terminal one after another. Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express ratio between the two amplitudes as 3NG R / B, 4NG R / B and 4PG R / B respectively. (Note) Relative amplitude of G-Y color difference signal shall be checked later in the Text section.
C12
Color Difference Output
(6)
(1) (2) (3) C13 Demodulation Relative Amplitude (4) (5)
50
2004-05-24
TB1227CNG
NOTE ITEM S26 S1 S31 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE MEASURING METHOD S33 S34 S39 S42 S44 S45 S51 (1) (2) (3) (4) C14 Demodulation Relative Phase ON A B B B A A A A B (5) (6) Activate the test mode (S26-ON, Sub Add 02 ; 08h). Connect band pass filter (Q = 2), set to TV mode (fo = 600kHz) with 0dB attenuation. Set the crystal mode to conform to European, Asian system and set the gate to normal status. Input 3N, 4N and 4P rainbow color bar signals having 100mVp-p burst to pin 42 of the chroma input terminal one after another. Measure phases of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express them as 3NR-B, 4NR-B and 4PR-B respectively. For measuring with 3N and 4N color bar signals in NTSC system, set six bars of the B-Y color difference waveform to the peak level with the Tint control and measure its phase difference from phase of R-Y color difference signal of pin 35 (R-Y OUT). (Note) Relative phase of G-Y color difference signal shall be checked later in the Text section. Activate the test mode (S26-ON, Sub Add 02 ; 08h). Connect band pass filter (Q = 2), set to TV mode (fo = 600kHz) with 0dB attenuation. Set the crystal mode to conform to European, Asian system. Set the gate to normal status. Input 3N and 4N rainbow color bar signals having 100mVp-p burst to pin 42 of the chroma input terminal one after another. Measure subcarrier leak of 3N and 4N color bar signals appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express those leaks as 3N-SCB / R and 4N-SCB / R.
(1) (2) (3) C15 Demodulation Output Residual Carrier (4) (5) (6)
51
2004-05-24
TB1227CNG
NOTE ITEM S26 S1 S31 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) SW MODE MEASURING METHOD S33 S34 S39 S42 S44 S45 S51 (1) (2) (3) C16 Demodulation Output Residual Higher Harmonic ON A B B B A A A A B (4) (5) Activate the test mode (S26-ON, Sub Add 02 ; 08h). Connect band pass filter (Q = 2), set to TV mode (fo = 600kHz) with 0dB attenuation. Set the crystal mode to conform to European, Asian system and set the gate to normal status. Input 3N and 4N rainbow color bar signals having 100mVp-p burst to pin 42 of the chroma input terminal one after another. Measure higher harmonic (2fc = 7.16MHz or 8.87MHz) of 3N and 4N color bar signals appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express them as 3N-HCB / R and 4N-HCB / R. Activate the test mode (S26-ON, Sub Add 02 ; 08h). Connect band pass filter (Q = 2) and set bus data for the TV mode (fo = 600kHz). Set the X'tal clock mode to conform to European, Asian system and set the gate to normal status. Input 3N rainbow color bar signal whose burst is 100mVp-p to pin 42 of the chroma input terminal. Measure amplitude of color difference output signal of pin 36 (B-Y OUT) with 0dB attenuation set by the bus control. Set the amplitude of the color difference output of pin 36 (B-Y OUT) to 0dB, and measure amplitude of the same signal with different attenuation of -2dB, -1dB and +1dB set by the bus control.
(1) (2) (3) C17 Color Difference Output ATT Check (4) (5)
52
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) BUS : TEST MODE BUS : NORMAL CONTROL MODE MEASURING METHOD 02H 07H 10H OTHER CONDITION D2 D1 D0 D7 D4 D3 D5 D4 D3 D2 D1 D0 (1) C18 16.2MHz Oscillation Frequency ON 0 0 0 1 0 0 0 0 0 0 0 0 0 -- (2) Input nothing to pin 42. Measure frequency of CW signal of pin 35 as fr, and find oscillation frequency by the following equation. foF = (fr - 0.05MHz)x4 C19 16.2MHz Oscillation Start Voltage ON 0 0 0 1 0 0 0 0 0 0 0 0 0 Impress pin 38 While raising voltage of pin 38, measure voltage when individually with oscillation waveform appears at pin 40. separate power supply. (1) (2) C20 fsc Free-Run Frequency ON 0 0 0 1 0 0 0 0 Variable 0 0 -- Input nothing to pin 42. Change setting of SUB (10H) D4, D3 and D2 according to respective frequency modes, and measure frequency of CW signal of pin 35. Detail of D4, D3 and D2 3.58M = 1 : (001), 4.43M = 2 : (010) M-PAL = 6 : (110), N-PAL = 7 : (111) 1 C21 fsc Output Amplitude OFF 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -- (1) (2) Input nothing to pin 42. Change setting of SUB (10H) D4, D3 and D2 according to respective frequency modes.Measure the amplitude of output signal of pin 27.
NOTE
ITEM
S 26
D5
53
2004-05-24
TB1227CNG
DEF SECTION
NOTE ITEM TEST CONDITION Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value ; pin 51 input video signal = 50 system (Note) "x" in the data column represents preset value at power ON. SUB-ADDRESS & BUS DATA MEASURING METHOD (1) DH1 H. Reference Frequency H. Reference Oscillation Start Voltage H. Output Frequency 1 Sub 02H 0 0 0 0 0 0 0 1 (2) (3) DH2 Sub 02H 0 0 0 0 0 0 0 1 Supply 5V to pin 26. Set bus data as indicated on the left. Measure the frequency of sync. output of pin 49.
In the test condition of the Note DH1, turning down the voltage supplied to pin 26 from 5V, measure the voltage when oscillation of pin 49 stops. (1) (2) (1) Set bus data as indicated on the left. In the condition of the above step 1, measure frequency (TH1) at pin 4. Set the input video signal of pin 51 to the 60 system. Set bus data as indicated on the left. In the above-mentioned condition, measure frequency (TH2) at pin 4. Supply 4.5V DC to pin 5 (or, make pin 5 open-circuited). Measure duty of pin 4 output. Make a short circuit between pin 5 and ground. Measure duty of pin 4 output.
DH3
Sub 10H
x
x
x
x
x
x
0
1
DH4
H. Output Frequency 2
Sub 10H
x
x
x
x
x
x
1
0
(2) (3)
DH5
H. Output Duty 1
--
--
--
--
--
--
--
--
--
(1) (2) (1) (2)
DH6 DH7
H. Output Duty 2 H. Output Duty Switching Voltage
-- --
-- --
-- --
-- --
-- --
-- --
-- --
-- --
-- --
Supply 2V DC to pin 5. While turning down the voltage from 2V, measure voltage when the output duty ratio becomes 41 to 37%. Measure the low voltage and high voltage of pin 4 output whose waveform is shown below.
DH8
H. Output Voltage
--
--
--
--
--
--
--
--
--
DH9
H. Output Oscillation Start Voltage
--
--
--
--
--
--
--
--
--
While raising H. VCC (pin 3) from 0V, measure voltage when pin 4 starts oscillation.
54
2004-05-24
TB1227CNG
TEST CONDITION Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value ; pin 51 input video signal = 50 system (Note) "x" in the data column represents preset value at power ON. SUB-ADDRESS & BUS DATA MEASURING METHOD (1) (2) (3) (4) (5) DH11 H. Picture Position, Maximum (6) (7) (8) (9) DH12 H. Picture Position, Minimum Sub 0BH 1 1 1 1 1 x x x 0 0 0 0 0 x x x Supply 4.5V DC to pin 5. Input video signal to pin 51. Set the width of pin 6 input pulse to 8s. Measure FBP shown in the figure below (FBP). Adjust the phase of pin 6 input pulse so that the center of pin 4's output pulse corresponds to the trailing edge of input sync. signal. Set bus data as indicated on the left and measure the horizontal picture position with respective bus data settings (HSFTmax, HSFTmin). Find HP difference between the conditions mentioned in the above step 6 (HSFT). Reset bus data to the preset value. While impressing 5V DC to pin 5, measure HP.
NOTE
ITEM
DH10 H. FBP Phase
(10) While impressing 4V DC to pin 5, measure HP. (11) Find difference between the two measurement results obtained in the preceding steps 9 and 10 (HCC).
DH13 H. Picture position Control Range
DH14 H. Distortion Correction Control Range
55
2004-05-24
TB1227CNG
TEST CONDITION Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value ; pin 51 input video signal = 50 system (Note) "x" in the data column represents preset value at power ON. SUB-ADDRESS & BUS DATA MEASURING METHOD Sub02H 0 0 0 0 0 1 0 0 (1) (2) (3) (4) 0 DH17 H. BLK Width, Maximum Sub 16H 1 1 1 x x x x x 0 0 x x x x x (5) In the condition of the steps 1 through 4 of the Note DH10, perform the following measurement. Supply 5V DC to pin 26. Set bus data as indicated on the left. Measure phase difference between pin 51 and pin 49 as shown below. Change the bus data as shown on the left and measure BLK width.
NOTE
ITEM
DH15 H. BLK Phase DH16 H. BLK Width, Minimum
DH18 P / N-GP Start Phase 1 DH19 P / N-GP Start Phase 2 DH20 P / N-GP Gate Width 1 DH21 P / N-GP Gate Width 2 Sub 0FH x x x x 1 x x x
(1) (2) (3) x x x x 0 x x x
Supply 5V to pin 26. Set bus data as indicated on the left. With the respective bus data settings mentioned above, measure the phase and gate width as shown in the figure below.
DH22 SECAM-GP Start Phase 1 DH23 SECAM-GP Start Phase 2 DH24 SECAM-GP Gate Width 1 DH25 SECAM-GP Gate Width 2 Sub 1FH x x x 1 x x x x x x x 0 x x x x
(1) (2) (3)
Supply 5V to pin 26. Set bus data as indicated on the left. With the respective bus data settings mentioned above, measure the phase and gate width as shown in the figure below.
56
2004-05-24
TB1227CNG
TEST CONDITION Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value ; pin 51 input video signal = 50 system (Note) "x" in the data column represents preset value at power ON. SUB-ADDRESS & BUS DATA MEASURING METHOD (1) (2) (3) (4) DH27 Noise Detection Level 2 0 0 x x x x x x (5) (6) (7) (8) (9) Input such a signal as shown by "a" of the following figure to pin 51. Set bus data as indicated in the first line of the left table. Measure NLX when amplitude of pin 41 changes. NL1 Set bus data as indicated in the second line of the left table. Measure NLX when amplitude of pin 41 changes. NL2 Set bus data as indicated in the third line of the left table. Measure NLX when amplitude of pin 41 changes. NL3 Set bus data as indicated in the fourth line of the left table. Measure NLX when amplitude of pin 41 changes. NL4
NOTE
ITEM
DH26 Noise Detection Level 1
0 DH28 Noise Detection Level 3 Sub 1DH 1
1
x
x
x
x
x
x
0
x
x
x
x
x
x
1 DH29 Noise Detection Level 4
1
x
x
x
x
x
x
DV1
V. Ramp Amplitude
(1)
Measure amplitude of V. ramp waveform of pin 52.
--
--
--
--
--
--
--
--
--
DV2
V. NF Maximum Amplitude V. NF Minimum Amplitude
Sub 17H
1
1
1
1
1
1
1
x
(1) (2) (1) (2)
Set data bus as indicated on the left. Measure amplitude of pin 54's signal. Set data bus as indicated on the left. Measure amplitude of pin 54's signal.
DV3
Sub 17H
0
0
0
0
0
0
0
x
57
2004-05-24
TB1227CNG
TEST CONDITION Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value ; pin 51 input video signal = 50 system (Note) "x" in the data column represents preset value at power ON. SUB-ADDRESS & BUS DATA MEASURING METHOD (1) (2) (3) (4) DV5 V. Amplifier Max. Output Sub 1BH 1 1 x x x x x x Set bus data as indicated on the left. Change 5.0V of pin 54 voltage by +0.1V and -0.1V, and measure V53 output voltage in both the conditions. Find GVA shown in the figure below. Measure Vvmax and Vvmin shown in the figure below.
NOTE
ITEM
DV4
V. Amplification Degree
DV6
V. Amplifier Min. Output
(1) (2) (3) V. S-Curve Correction, Max. Correction Quantity
Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value. Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below. Find VS according to the equation that VS = (X / Y)x100%.
DV7
Sub 19H
1
1
1
1
1
1
1
x
58
2004-05-24
TB1227CNG
TEST CONDITION Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value ; pin 51 input video signal = 50 system (Note) "x" in the data column represents preset value at power ON. SUB-ADDRESS & BUS DATA MEASURING METHOD (1) (2) (3) DV8 V. Reverse S-Curve Correction, Max. Correction Quantity Sub 19H 0 0 0 0 0 0 0 x Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value. Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below. Find VS according to the equation that VS = (X / Y)x100%.
NOTE
ITEM
(1) (2) (3) DV9 V. Linearity Max. Correction Quantity Sub 1AH 1 1 1 1 1 x x x
Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value. Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below. Find VS according to the equation that VS = (X / 2Y)x100%.
59
2004-05-24
TB1227CNG
TEST CONDITION Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value ; pin 51 input video signal = 50 system (Note) "x" in the data column represents preset value at power ON. SUB-ADDRESS & BUS DATA MEASURING METHOD (1) (2) (3) (4) DV11 AFC-MASK Stop Phase Sub 02H 0 0 0 0 0 0 0 1 (5) Supply 5V DC to pin 26. Set bus data as indicated on the left and activate the test mode. Measure the AFC-MASK start phase (X) and AFC-MASK stop phase (Y) of pin 49. Set the Sub 16H as indicated on the left. Measure the VNFB start phase (Z) of pin 54.
NOTE
ITEM
DV10 AFC-MASK Start Phase
Sub 16H DV12 VNFB Phase
x
x
x
x
x
0
0
0
DV13 V. Output Maximum Phase
(1) (2) (3)
Input video signal to pin 51. Measure both phases (Xmax, Xmin) of pin 52 and pin 54 with the respective bus data settings shown on the left. Find difference between the two phases measured in the above step 2. Y = Xmax - Xmin
DV14 V. Output Minimum Phase Sub 16H
x
x
x
x
x
0
0
0
x DV15 V. Output Phase Variable Range
x
x
x
x
1
1
1
60
2004-05-24
TB1227CNG
TEST CONDITION Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value ; pin 51 input video signal = 50 system (Note) "x" in the data column represents preset value at power ON. SUB-ADDRESS & BUS DATA MEASURING METHOD (1) (2) Sub 1BH DV17 50 System VBLK Stop Sub 1CH Phase 0 1 x x x x x x (3) Input such a video signal of the 50 system as shown in the figure to pin 51. Set bus data as indicated on the left. Measure the VBLK start phase (X) and VBLK stop phase (Y) of pin 12.
NOTE
ITEM
DV16 50 System VBLK Start Phase
0
x
x
x
x
x
x
x
DV18 60 System VBLK Start Phase Sub 1BH DV19 60 System VBLK Stop Sub 1CH Phase 0 1 x x x x x x
(1) (2) (3)
Input such a video signal of the 60 system as shown in the figure to pin 51. Set bus data as indicated on the left. Measure the VBLK start phase (X) and VBLK stop phase (Y) of pin 12.
0
x
x
x
x
x
x
x
(1) (2) (3) (4) DV20 V. Lead-In Range 1 Sub 16H x x x 0 0 0 0 0 (5) (6)
Set bus data as indicated on the left. Input 262.5 H video signal to pin 51. Set a certain number of field lines in which signals of pin 51 and pin 54 completely synchronize with each other as shown in the figure below. Decrease the field lines in number and measure number of lines in which pin 51 and pin 54 signals do not synchronize with each other. Again set a certain number of field lines in which pin 51 and pin 52 signals synchronize with each other. Increase the field lines in number and measure number of lines in which pin 51 and pin 52 signals do not synchronize with each other.
61
2004-05-24
TB1227CNG
TEST CONDITION Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value ; pin 51 input video signal = 50 system (Note) "x" in the data column represents preset value at power ON. SUB-ADDRESS & BUS DATA MEASURING METHOD (1) (2) (3) (4) (5) (6) Set bus data as indicated on the left. Input 262.5 H video signal to pin 51. Set a certain number of field lines in which signals of pin 51 and pin 54 completely synchronize with each other as shown in the figure below. Decrease the field lines in number and measure number of lines in which pin 51 and pin 54 signals do not synchronize with each other. Again set a certain number of field lines in which pin 51 and pin 52 signals synchronize with each other. Increase the field lines in number and measure number of lines in which pin 51 and pin 52 signals do not synchronize with each other.
NOTE
ITEM
DV21 V. Lead-In Range 2
Sub 16H
x
x
x
0
1
0
0
0
DV22 W-VBLK Start Phase x Sub 1BH x DV23 W-PMUTE Start Phase Sub 1DH (Note) Only the 60 system is subject to evaluation. x x 1 1 1 1 1 1 x 1 1 1 1 1 1 x 0 0 0 0 0 0
(1)
Set bus data as specified for the Sub 1BH in the left columns, and measure the value of X shown in the figure below. W-VBLK start phase : MAX, MIN Set bus data as specified for the Sub 1DH in the left columns, and measure the value of X shown in the figure below. W-PMUTE start phase : MAX, MIN
(2)
x
x
0
0
0
0
0
0
62
2004-05-24
TB1227CNG
TEST CONDITION Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value ; pin 51 input video signal = 50 system (Note) "x" in the data column represents preset value at power ON. SUB-ADDRESS & BUS DATA MEASURING METHOD (1) x Sub 1CH x DV25 W-PMUTE Stop Phase x (Note) Only the 60 system is subject to evaluation. DV26 V Centering Center Voltage DV27 V Centering Max Voltage DV28 V Centering Min Voltage Sub 18H Sub 1EH x 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 (2) Set bus data as specified for the Sub 1CH in the left columns, and measure the value of Y shown in the figure below. W-VBLK stop phase : MAX, MIN Set bus data as specified for the Sub 1EH in the left columns, and measure the value of Y shown in the figure below. W-PMUTE stop phase : MAX, MIN
NOTE
ITEM
DV24 W-VBLK Stop Phase
1
0
0
0
0
0
x
x
(1) (2)
Set bus data as indicated on the left. Measure the voltage of pin 47 with respective bus data settings.
1
1
1
1
1
1
x
x
0
0
0
0
0
0
x
x
63
2004-05-24
TB1227CNG
1H DL SECTION
NOTE ITEM TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value ; pin3 = 9V ; pin8 * 38 * 41 = 5V) SUB ADDRESS & DATA MEASURING METHOD 07H 0FH 11H (1) (2) H1 1HDL Dynamic Range Direct ON 94H -- -- Input waveform 1 to pin 33 (B * Yin) , and measure VNBD, that pin 36 (B * Yout) is saturated input level. Measure VNRD of R * Y input in the same way as VNBD.
SW MODE S26
H2
1HDL Dynamic Range Delay 1HDL Dynamic Range, Direct+Delay Frequency Characteristic, Direct
8CH
--
--
(1) (2) (1) (2) (1)
Input waveform 1 to pin 33 (B-Yin), and measure VPBD, that pin 36 (B-Yout) is saturated input level. Measure VPRD of R-Y input in the same way as VPBD. Input waveform 1 to pin 33 (B-Yin), and measure VSBD, that pin 36 (B-Yout) is saturated input level. Measure VNRD of R-Y input in the same way as VSBD. In the same measuring as H1, set waveform 1 to 0.3Vp-p and f = 100kHz. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to f = 700kHz. Measure VB700, that is pin 36 (B-Yout) level. GHB1 = 20og (VB700 / VB100)
H3
A4H
--
--
H4
94H
--
-- (2) (1)
Measure GHR1 of R-Y out in the same way as GHB1. In the same measuring as H1, set waveform 1 to 0.3Vp-p and f = 100kHz. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to f = 700kHz. Measure VB700, that is pin 36 (B-Yout) level. GHB2 = 20og (VB700 / VB100)
H5
Frequency Characteristic, Delay
8CH
--
-- (2) (1)
Measure GHR2 of R-Y out in the same way as GHB2.Measure VB700, that is pin 36 (B-Yout) level. In the same measuring as H1, set waveform 1 to 0.7Vp-p. Measure VByt1, that is pin 36 (B-Yout) level. GBY1 = 20og (VByt1 / 0.7) Measure GRY1 of R-Y out in the same way as GBY1. In the same measuring as H1, set waveform 1 to 0.7Vp-p. Measure VByt2, that is pin 36 (B-Yout) level. GBY2 = 20og (VByt2 / 0.7) Measure GRY2 of R-Y out in the same way as GBY2.
H6
AC Gain Direct
94H
--
-- (2) (1)
H7
AC Gain Delay
8CH
--
-- (2)
64
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value ; pin3 = 9V ; pin8 * 38 * 41 = 5V) SUB ADDRESS & MEASURING METHOD DATA 07H 0FH 11H 94H 8CH 8CH -- -- (1) (2) (1) (2) (1) (2) GBYD = GBY1 - GBY2 GRYD = GRY1 - GRY2 Measure pin 36 (B-Yout) DC stepping of the picture period. Measure pin 35 (R-Yout) DC stepping of the picture period. Input waveform 2 to pin 33 (B-Yin). And measure the time deference BDt of pin 36 (B-Yout). Input waveform 2 to pin 34 (R-Yin). And measure the time diference RDt of pin 36 (B-Yout).
NOTE
ITEM
SW MODE S26
H8
Direct * Delay AC Gain Difference Color Difference Output DC Stepping
ON
H9
--
--
H10
1H Delay Quantity
8CH
--
--
(1) 00H Color Difference Output DC-Offset Control (2) (3) 8CH 20H 88H (4) (5) FFH (6) (7) Color Difference Output DC-Offset Control / Min. Control Quantity (1) A4H 00H 89H (2) (3) (1) H13 NTSC Mode Gain / NTSC-COM Gain 94H 80H -- (2) (3)
Set Sub-Address 11h ; data 88h. Measure the pin 36 DC voltage, that is BDC1. Set Sub-Address 11h ; data 88h. Measure the pin 35 DC voltage, that is RDC1. Set Sub-Address 11h ; data 00h. Measure the pin 36 DC voltage, that is BDC2. Set Sub-Address 11h ; data 00h. Measure the pin 35 DC voltage, that is RDC2. Set Sub-Address 11h ; data FFh. Measure the pin 36 DC voltage, that is BDC3. Set Sub-Address 11h ; data FFh. Measure the pin 35 DC voltage, that is RDC3. Bomin = BDC2 - BDC1, Bomax = BDC3 - BDC1, Romin = RDC2 - RDC1, Romax = RDC3 - RDC1 Measure the pin 36 DC voltage, that is BDC4. Measure the pin 35 DC voltage, that is RDC4. Bo1 = BDC4 - BDC1, Ro1 = RDC4 - RDC1 Input waveform 1, that is set 0.3Vp-p and f = 100kHz, to pin 33. Measure pin 36 output level, that is VBNC. GNB = 20og (VBNC / VB100) In the same way as (1) and (2), measure the pin 36 output level, that is VRNC. GNR = 20og (VRNC / VR100)
H11
H12
65
2004-05-24
TB1227CNG
TEXT SECTION
NOTE ITEM S21 S22 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 -- -- -- 00H 02H -- -- -- -- (1) T1 Y Color Difference Clamping Voltage B B B B B A -- -- -- FFH 00H -- -- -- -- (2) (3) (1) (2) (3) (4) Short circuit pin 31 (Y IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in AC coupling. Input 0.3V synchronizing signal to pin 51 (Sync IN). Measure voltage at pin 31, pin 34 and pin 33 (Vcp31, Vcp34, Vcp33). Input TG7 sine wave signal whose frequency is 100kHz and video amplitude is 0.7V to pin 31 (Y IN). Input 0.3V Synchronizing Signal to pin 51 (Sync IN). Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that Y sub contrast and drive are set at each center value and color is minimum. Varying data on contrast from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of respective outputs of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT) in video period, and read values of bus data at the same time. Also, measure the respective amplitudes with the bus data set to the center value (80). (Vc12mx, Vc12mn, D12c80) (Vc13mx, Vc13mn, D13c80) (Vc14mx, Vc14mn, D14c80) (6) Find ratio between amplitude with maximum unicolor and that with minimum unicolor in conversion into decibel (V13ct).
(5) FFH T2 Contrast Control Characteristic -- -- -- 80H 00H 00H -- -- -- --
T3
AC Gain

--
--
--
--
--
--
--
--
--
In the test condition of Note T2, find output / input gain (double) with maximum contrast. G = Vc13mx / 0.7V
66
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 -- -- -- 00H 02H -- -- -- -- (1) (2) (3) T4 Frequency Characteristic B B B B B A -- -- -- FFH 00H -- -- -- -- (4) (5) (6) Input TG7 sine wave signal whose frequency is 6MHz and video amplitude is 0.7V to pin 31 (Y IN). Input 0.3V synchronizing signal to pin 51 (Sync IN). Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that contrast is maximum, Y sub contrast and drive are set at each center value and color is minimum. Measure amplitude of pin 13 signal (G OUT) and find the output / input gain (double) (G6M). From the results of the above step 5 and the Note T3, find the frequency characteristic. Gf = 20og (G6M / G)
NOTE
ITEM S21 S22
67
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 S42 -- -- 00H 02H 05H 1BH 08H -- (1) (2) (3) T5 Y Sub-Contrast Control Characteristic B B B B B A -- -- -- FFH 00H 1FH 00H -- -- -- (4) (5) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Input TG7 sine wave signal whose frequency is 100kHz and video amplitude is 0.7V to pin 31 (Y IN). Input 0.3V synchronizing signal to pin 51 (Sync IN). Set bus data so that contrast is maximum, drive is set at center value and color is minimum. Set bus data on Y sub contrast at maximum (FF) and measure amplitude (Vscmx) of pin 14 output (R OUT). Then, set data on Y sub contrast at minimum (00), measure the same (Vscmn). From the results of the above step 5, find ratio between Vscmx and Vscmn in conversion into decibel (Vscnt). Set bus data so that contrast is maximum, Y sub contrast and drive are at each center value. Input 0.3V synchronizing signal to pin 51 while inputting TG7 sine wave signal whose frequency is 100kHz to pin 31 (TY IN). While increasing the amplitude of the sine wave signal, measure video amplitude of signal 1 just before R output of pin 14 is distorted. (Vy2d)
NOTE
ITEM S21 S22
(6) (1) (2) T6 Y2 Input Level -- -- -- -- -- BFH 44H -- (3)
68
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 S42 -- -- 00H 02H 05H 1BH 08H -- (1) (2) (3) (4) (5) FFH T7 Unicolor Control Characteristic B B B B B A -- -- -- 80H 00H -- -- BFH -- -- Input 0.3V synchronizing signal to pin 51 (Sync IN). Input 100kHz, 0.3Vp-p sine wave signal to both pin 33 (B-Y IN) and pin 34 (R-Y IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that drive is at center value and Y mute is on. While changing bus data on unicolor from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of pin 13 (G OUT) and pin 12 (B OUT) in video period respectively, and read the bus data together with. Also, measure respective amplitudes as unicolor data is set at center value (80). (Vn12mx, Vn12mn, D12n80) (Vn13mx, Vn13mn, D13n80) (Vn14mx, Vn14mn, D14n80) (6) Find ratio between amplitude with maximum unicolor data and that with minimum unicolor data in conversion into decibel (V13un).
NOTE
ITEM S21 S22
T8
Relative Amplitude (NTSC)
A
A
A
A
--
--
FFH
--
--
--
--
While inputting rainbow color bar signal (3.58MHz for NTSC) to pin 42 and 0.3V synchronizing signal to pin 51 so that video amplitude of pin 33 is 0.38Vp-p, find the relative amplitude (Mnr-b = Vu14mx / Vu12mx, Mng-b = Vu13mx / Vu12mx). (1) In the test condition of the Note T8, adjust bus data on tint so that output of pin 12 (B OUT) has the peak level in the 6th bar. Regarding the phase of pin 12 (B OUT) as a reference phase, find comparative phase differences of pin 14 (R OUT) and pin 13 (G OUT) from the reference phase respectively (nr-b, ng-b).
T9
Relative Phase (NTSC)

--
--
--
--
--
--
(2)
69
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 S42 -- -- 00H 02H 1BH -- -- -- A A A A A -- -- FFH -- BFH -- -- -- While inputting rainbow color bar signal (4.43MHz for PAL) to pin 42 and 0.3V synchronizing signal to pin 51 so that video amplitude of pin 33 is 0.38Vp-p, find the relative amplitude. (Mpr-b = Vu14mx / Vu12mx, Mpg-b = Vu13mx / Vu12mx) (1) T11 Relative Phase (PAL) -- -- -- -- -- -- -- (2) In the test condition of the Note T10, adjust bus data on tint so that output of pin 12 (B OUT) has the peak level in the 6th bar. Regarding the phase of pin 12 (B OUT) as a reference phase, find comparative phase differences of pin 14 (R OUT) and pin 13 (G OUT) from the reference phase respectively (pr-b, pg-b). Input 0.3V synchronizing signal to pin 51 (Sync IN). Input 100kHz, 0.1Vp-p sine wave signal to both pin 33 (B-Y IN) and pin 34 (R-Y IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that unicolor is maximum, drive is at center value and Y mute is on. Measure amplitude of pin 12 (B OUT) as bus data on color is set maximum (FF). (Vcmx) Read bus data when output level of pin 12 is 10%, 50% and 90% of Vcmx respectively (Dc10, Dc50, Dc90). From results of the above step 6, calculate number of steps from Dc10 to Dc90 (col) and that from 00 to Dc50 (ecol). Measure respective amplitudes of pin 12 (B OUT), pin 13 (G OUT) and pin 14 (R OUT) with color data set at minimum, and regard the results as color residuals (ecb, ecg, ecr).
NOTE
ITEM S21 S22 B
T10
Relative Amplitude (PAL)
B
(1) (2) (3) T12 Color Control Characteristic B B B -- -- -- FFH -- -- -- (4) (5) (6) (7)
T13
Color Control Characteristic, Residual Color

--
--
--
00H
--
--
--
(8)
70
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 S42 -- -- 00H 02H 1BH -- -- -- (1) Input rainbow color bar signal (3.58MHz for NTSC or 4.43MHz for PAL) to pin 42 (C IN) and 0.3V synchronizing signal to pin 51 (Sync IN). Connect pin 36 (B-Y OUT) and pin 33 (B-Y IN), pin 35 (R-Y OUT) and pin 34 (R-Y IN) in AC coupling respectively. Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that unicolor is maximum, drive and color are set at each center value (80) and mute is on. While increasing amplitude of chroma signal input to pin 42, measure amplitude just before any of pin 12 (B OUT), pin 13 (G OUT) and pin 14 (R OUT) output signals is distorted (Vcr).
NOTE
ITEM S21 S22
(2) T14 Chroma Input Range B B A A A A A -- -- FFH 88H BFH -- -- -- (3) (4) (5)
71
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 -- -- -- 00H 05H -- -- -- -- (1) T15 Brightness Control Characteristic B B B B B A -- -- -- FFH 00H 10H -- -- -- -- (2) (3) (4) T16 Brightness Center Voltage (5) -- -- -- 80H -- -- -- -- (6) (7) T17 Brightness Data Sensitivity -- -- -- -- -- -- -- -- -- Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input 0.3V synchronizing signal to pin 51 (Sync IN). Set bus data so that R, G, B cut off data are set at center value. Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. While changing bus data on brightness from maximum to minimum, measure video voltage of pin 13 (G OUT) to find maximum and minimum voltages (max : Vbrmx, min : Vbrmn). With bus data on brightness set at center value, measure video voltage of pin 13 (G OUT) (Vbcnt). On the conditon that bus data with which Vbrmx is obtained in measurement of the above step 5 is Dbrmx and bus data with which Vbrmn is obtained in measurement of the above step 5 is Dbrmn, calculate sensitivity of brightness data (Vbrt). Vbrt = (Vbrmxg - Vbrmng) / (Dbrmxg - Dbrmng) T18 RGB Output Voltage Axes Difference (1) -- -- -- -- -- -- -- -- -- (2) (1) (2) In the same manner as the Note T16, measure video voltage of pin 12 (B OUT) with bus data on brightness set at center value. Find maximum axes difference in the brightness center voltage. Set bus data so that contrast and Y sub contrast are maximum and brightness is minimum. Input TG7 sine wave signal whose frequency is 100kHz and amplitude in video period is 0.9V to pin 31 (Y IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. While turning on / off WPL with bus, measure video amplitude of pin 14 (R OUT) with WPL being activated (Vwpl).
NOTE
ITEM S21 S22
T19
White Peak Limit Level

--
--
--
00H 1FH
--
--
--
--
(3) (4)
72
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 -- -- -- 09H 0AH 0CH 0DH 0EH -- FFH FFH FFH T20 Cutoff Control Characteristic B B B B B A -- -- -- 80H 80H 00H 00H 00H -- (1) (2) (3) (4) (5) T21 Cutoff Center Level -- -- -- 80H 80H 80H -- (6) (7) T22 Cutoff Variable Range -- -- -- -- ---- -- -- -- -- Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input 0.3V synchronizing signal to pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data on brightness at center value. While changing data on cutoff from maximum to minimum, measure video voltage of pin 13 (G OUT) to find maximum and minimum values (max : Vcomx, min : Vcomn). Set cutoff data at center value and measure video voltage of pin 13 (G OUT) (Vcoct). On the condition that bus data with which Vcomx is obtained in measurement of the above step 5 is Dcomx and bus data with which Vcomn is obtained in the same is Dcomn, calculate number of steps (Dcut). Dcut = Dcomx - Dcomn (1) (2) (3) (4) T23 Drive Variable Range -- -- -- FFH FFH 00H 00H 80H 80H 80H -- (5) (6) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input a stepping signal whose amplitude in video period is 0.3V to pin 31 (Y IN). Input 0.3V synchronizing signal to pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that contrast is maximum and Y sub contrast is minimum. While changing drive data from minimum to maximum, measure video amplitude of pin 13 (G OUT) to find maximum and minimum values (max : Vdrmx, min : Vdrmn). Set drive data at center value and measure video amplitude of pin 13 (G OUT) (Vdrct). Calculate amplitude ratio of the measured value to the maximum and minimum amplitudes measured in the above step 6 respectively (DR+, DR-).
NOTE
ITEM S21 S22
(7)
73
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 S45 S39 S44 -- -- -- -- -- -- (1) (2) (3) (4) (5) (6) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input such the step-up signal as shown below to pin 45 (Y IN) and pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that contrast is maximum and DC transmission correction factor is minimum. Adjust data on Y sub contrast so that video amplitude of pin 13 (G OUT) is 2.5V. While varying APL of the step-up signal from 10% to 90%, measure change in voltage at the point A.
NOTE
ITEM S21 S22
T24
DC Regeneration
B
B
A
B
B
A
B
A
A
--
--
--
--
--
--
(1) (2) (3) T25 RGB Output S / N Ratio B -- -- -- -- -- -- -- -- -- (4) (5) (6)
Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data on contrast at maximum. Set bus data on Y sub contrast at center value. Measure video noise level of pin 13 (G OUT) with oscilloscope (no). SNo = -20og (2.5 / (1 / 5) xno)
74
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 -- -- -- 01H 05H 08H 0CH 0DH 0EH (1) (2) T26 Blanking Pulse Output Level B B B B B A -- -- -- 80H 10H 04H 80H 80H 80H (3) (4) (5) Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that blanking is on. Measure voltage of pin 13 (G OUT) in V. blanking period (Vv). Measure voltage of pin 13 (G OUT) in H. blanking period (Vh).
NOTE
ITEM S21 S22
In the setting condition of the Note T26, find "tdon" and "tdoff" (see figure below) between the signal impressed to pin 6 (BFP IN) and output signal of pin 13 (G OUT). T27 Blanking Pulse Delay Time -- -- --
(1) (2) -- -- -- 00H 00H 00H 00H (3) (4) (5) (1) (2) (3) T29 RGB Max. Output Level -- -- -- 80H 1fH 44H 80H 80H 80H (4) (5)
Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that brightness and RGB cutoff are minimum. Measure video voltage of pin 13 (G OUT) (Vmn). Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input stepping signal to pin 31 (Y IN) and synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that contrast and Y sub contrast are maximum. While increasing amplitude of the stepping signal, measure maximum output level just before video signal of pin 13 (G OUT) is distorted (Vmn).
T28
RGB Min. Output Level
75
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S20 S21 S22 S31 S33 S34 S51 15H 1CH -- -- -- -- (1) T30 Halftone Ys Level B B B A B B B B A 00H 80H -- -- -- -- (2) (3) Input stepping signal whose amplitude is 0.3V in video period to pin 31 (Y IN) and pin 51 (Sync IN). Set bus data so that blanking is off and halftone is -3dB in on status. Connect power supply to pin 21 (Digital Ys). While impressing 0V to it, measure amplitude and pedestal level of pin 13 (G OUT) in video period (Vm13, Vp13). Raising supply voltage to pin 21 gradually from 0V, measure level (Vtht1) of pin 21 when amplitude of pin 13 output signal changes. At the same time, measure amplitude and pedestal level of pin 13 in video period after the pin 13 output signal changed in amplitude. (Vm13b, Vp13b) According to results of the above steps 3 and 4, calculate gain of -3dB halftone and variation of pedestal level. G3ht13 = 20 log (Vm13b / Vm13)
(6) Set bus data so that halftone is -6dB in on status, and perform the same measurement as the above steps 4 and 5 to find gain of -6dB halftone and variation of pedestal level (G6th13). Raising supply voltage to pin 21 further from Vtht1, measure level (Vttx1) of pin 21 when output signal of pin 13 (G OUT) changes in amplitude and DC level of pin 13 after the change of its output (Vtx13). From results of the above steps 3 and 7, calculate low level of the output in the text mode. Vtxl13 = Vtx13 - Vp13
NOTE
ITEM S18 S19
T31
Halftone Gain 1


--
--
--
--
(4)
(5) T32 Halftone Gain 2 01H -- -- -- --
(7)
T33
Text ON Ys, Low Level


--
--
--
--
(8)
T34
Text / OSD Output, Low Level


--
--
--
--
(9)
Raising supply voltage to pin 21 by 3V from that in the above step 7, confirm that there is no change in output level of pin 13.
76
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S20 S21 S22 S31 S33 S51 -- 15H 1CH -- -- -- -- (1) (2) A A A A B B B A -- 02H 80H -- -- -- -- (3) Input stepping signal whose amplitude is 0.3V in video period to pin 31 (Y IN) and pin 51 (Sync IN). Set bus data so that blanking and halftone are off. Connect power supply to pin 21 (Digital Ys). While impressing 0V to it, measure pedestal level of pin 13 output signal (G OUT) (Vpl13). Connect power supply to pin 19 (Digital G IN) and impress it with 2V. Raising supply voltage to pin 21 gradually from 0V, measure video level of pin 21 after output signal of pin 13 changed (Vlx13). From measurement results of the above steps 3 and 5, calculate high level in the text mode. Vmt13 = Vtx13 - Vpt13 (7) Raising supply voltage to pin 21 further from that in the step 5, measure level (Vtost) of pin 21 when the level of pin 13 output signal changes from that in the step 5 to -6dB as halftone data is set to ON (the 6th step of Notes T30 to T34). In the condition of the above step 7, raise voltage impressed to pin 19 to 3V and measure output voltage of pin 13 (Vos13). From results of the above steps 3 and 7, calculate high level of the output in the OSD mode. Vmos13 = Vos13 - Vpt13
NOTE
ITEM S18 S19
T35
Text RGB Output, High Level
(4) (5) T36 OSD Ys ON, Low Level -- -- -- -- -- (6)
T37
OSD RGB Output, High Level
(8) -- -- -- -- -- (9)
77
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S20 S21 S22 S31 S33 S34 S51 -- -- -- -- -- -- (1) (2) T38 Text Input Threshold Level A A A A B B B B A -- -- -- -- -- -- (3) (1) (2) T39 OSD Input Threshold Level -- -- -- -- -- -- (3) Connect power supply to pin 21 (Digital Ys) and impress 1.5V to it. Connect power supply to pin 19 (Digital G IN). While raising supply voltage gradually from 0V, measure supply voltage when output signal of pin 13 (G OUT) changes (Vtxt). Raising the supply voltage to pin 19 furthermore to 4V, confirm that there is no change in the output signal of pin 13 (G OUT). Connect power supply to pin 21 (Digital Ys) and impress 2.5V to it. Connect power supply to pin 19 (Digital G IN). While raising supply voltage gradually from 0V, measure supply voltage when output signal of pin 13 (G OUT) changes (Vosd). Raising the supply voltage to pin 19 furthermore to 4V, confirm that there is no change in the output signal of pin 13 (G OUT).
NOTE
ITEM S18 S19
78
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S20 S21 S22 S31 S33 S34 S51 -- -- -- -- -- -- (1) T40 OSD Mode Switching Rise-Up Time A A A A B B B B A -- -- -- -- -- -- (2) Input a Signal Shown by (a) in the following figure to pin 21 (Digital Ys). According to (b) in the figure, measure Rosd, tPRos, Fosd and tPFos for output signals of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT) respectively. Find maximum values of tPRos and tPFos respectively (tPRos, tPFos).
NOTE
ITEM S18 S19
(3) T41 OSD Mode Switching Rise-Up Transfer Time -- -- -- -- -- --
T42
OSD Mode Switching Rise-Up Transfer Time, 3 Axes Difference


--
--
--
--
--
--
T43
OSD Mode Switching Breaking Time


--
--
--
--
--
--
T44
OSD Mode Switching Breaking Transfer Time


--
--
--
--
--
--
T45
OSD Mode Switching Breaking Transfer Time, 3 Axes Difference


--
--
--
--
--
--
79
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S20 S21 S22 S31 S33 S34 S51 -- -- -- -- -- -- (1) T46 OSD Hi DC Switching Rise-Up Time A A A A B B B B A -- -- -- -- -- -- (2) (3) (4) OSD Hi DC Switching Rise-Up Transfer Time (5) (6) (7) T48 OSD Hi DC Switching Rise-Up Transfer Time, 3 Axes Difference -- -- -- -- -- -- (8) Supply pin 21 (Digital Ys) with 2.5V. Input 5Vp-p signal shown by (a) in the figure to pin 18 (Digital R IN). Referring to (b) of the following figure, measure Rosh, tPRoh, Fosh and tPFoh for output signal of pin 14 (R OUT). Input 5Vp-p signal shown by (a) in the figure to pin 19 (Digital G IN). Perform the same measurement as the above step 3 for pin 13 output (G OUT) referring to (b) of the following figure. Input 5Vp-p signal shown by (a) in the figure to pin 20 (Digital B IN). Perform the same measurement as the above step 3 for pin 12 output (B OUT) referring to (b) of the following figure. Find maximum axes differences in tPRoh and tPFoh among the three outputs (tPRoh, tPFoh).
NOTE
ITEM S18 S19
T47


--
--
--
--
--
--
T49
OSD Hi DC Switching Breaking Time


--
--
--
--
--
--
T50
OSD Hi DC Switching Breaking Transfer Time


--
--
--
--
--
--
T51
OSD Hi DC Switching Breaking Transfer Time, 3 Axes Difference


--
--
--
--
--
--
80
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 -- -- -- 06H -- -- -- -- -- (1) (2) (3) (4) (5) Input 0.3V synchronizing signal to pin 51 (Sync IN). Supply 5V of external supply voltage to pin 22 (Analog Ys). Set bus data on drive at center value. Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.5V) to pin 23 (Analog R IN). While changing data on RGB contrast from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of pin 14 (R OUT) in video period. At the same time, measure video amplitude of pin 14 when the bus data is set at the center value (80). (Vc14mx, Vc14mn, D14c80) In the same manner as the above steps 4 and 5, measure output signal of pin 13 with input of the same external power supply to pin 24 (Analog G IN), and measure output signal of pin 12 with input of the same power supply to pin 25 (Analog B IN). (Vc12mx, Vc12mn, D12c80). Find amplitude ratio between signal with maximum unicolor data and signal with minimum unicolor data in conversion into decibel (V13ct).
NOTE
ITEM S21 S22
(6) FFH T52 RGB Contrast Control Characteristic B A B B B A -- -- -- 80H 00H -- -- -- -- -- (7)
81
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 -- -- -- 06H -- -- -- -- -- B B B A -- -- -- -- -- -- -- -- -- In the setting condition of the Note T52, calculate output / input gain (double) with contrast data being set maximum. G = Vc13mx / 0.5V (1) (2) (3) Analog RGB Frequency Characteristic (4) -- -- -- FFH -- -- -- -- -- (5) (6) Input 0.3V synchronizing signal to pin 51 (Sync IN). Supply 5V of external supply voltage to pin 22 (Analog Ys). Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.5V) to pin 24 (Analog G IN). Set bus data so that contrast is maximum and drive is set at center value. Measure video amplitude of pin 13 (G OUT) and calculate output / input gain (double) (G6M). From measurement results of the above step 5 and the preceding Note 53, find frequency characteristic. Gf = 20og (G6M / G)
NOTE
ITEM S21 S22 A
T53
Analog RGB AC Gain
B
T54
82
2004-05-24
TB1227CNG
NOTE ITEM S21 S22 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 -- -- -- 01H 06H -- -- -- -- (1) (2) (3) T55 Analog RGB Dynamic Range B A B B B A -- -- -- -- 00H -- -- -- -- (4) (5) (1) T56 RGB Brightness Control Characteristic -- -- -- FFH 00H -- -- -- -- -- (2) (3) (4) (5) T57 RGB Brightness Center Voltage -- -- -- 80H -- -- -- -- -- (6) (7) T58 RGB Brightness Data Sensitivity -- -- -- -- -- -- -- -- -- Input 0.3V synchronizing signal to pin 51 (Sync IN). Supply 5V of external supply voltage to pin 22 (Analog Ys). Set bus data so that contrast is minimum and drive is set at center value. While inputting stepping signal to pin 24 (Analog G IN), increase video amplitude gradually from 0. Measure video amplitude of pin 24 when video voltage of pin 13 (G OUT) does not change. Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input 0.3V synchronizing signal to pin 51 (Sync IN). Set bus data on RGB cutoff at center value. Supply 5V of external supply voltage to pin 22 (Analog Ys). While changing data brightness from maximum to minimum, measure maximum and minimum voltages of pin 13 (G OUT) in video period. (max : Vbrmx, min : Vbrmn) Set bus data on brightness at center value and measure video voltage of pin 13 (G OUT) (Vbcnt). On the condition that bus data with which Vbrmx is obtained in measurement of the above step 5 is Dbrmx and bus data with which Vbrmn is obtained in measurement of the above step 5 is Dbrmn, calculate sensitivity of brightness data (Vbrt). Vbrt = (Vbrmx - Vbrmn) / (Dbrmx - Dbrmn) (1) T59 Analog RGB Mode ON Voltage -- -- -- 80H -- -- -- -- -- (2) (3) Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.3V) to pin 23 (Analog R IN). Supply 5V of external supply voltage to pin 22 (Analog Ys) and raise the voltage gradually from 0V. Measure voltage at pin 22 when signal 1 is output from pin 14 (R OUT) (Vanath).
83
2004-05-24
TB1227CNG
NOTE ITEM S21 Analog RGB Switching Rise-Up Time S22 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 -- -- -- -- -- -- -- -- -- (1) T60 B A B B B A -- -- -- -- -- -- -- -- -- (2) Supply signal (2Vp-p) shown by (a) in the following figure to pin 22 (Analog Ys). Referring to (b) of the following figure, measure Rana, tPRan, Fana and tPFan for outputs of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT). Find maximum values of tPRan and tPFan respectively (tPRan, tPFan).
(3) T61 Analog RGB Switching Rise-Up Transfer Time -- -- -- -- -- -- -- -- --
T62
Analog RGB Switching Rise-Up Transfer Time, 3 Axes Difference

--
--
--
--
--
--
--
--
--
T63
Analog RGB Switching Breaking Time

--
--
--
--
--
--
--
--
--
T64
Analog RGB Switching Breaking Transfer Time

--
--
--
--
--
--
--
--
--
T65
Analog RGB Switching Breaking Transfer Time, 3 Axes Difference

--
--
--
--
--
--
--
--
--
84
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 -- -- -- -- -- -- -- -- -- (1) T66 Analog RGB Hi Switching Rise-Up Time (2) B A B B B A -- -- -- -- -- -- -- -- -- (3) (4) Analog RGB Hi Switching Rise-Up Transfer Time (5) Supply 2V to pin 22 (Analog Ys). Input 0.5Vp-p signal shown by (a) in the following figure to pin 23 (Analog R IN). Referring to (b) of the following figure, measure Ranh, tPRah, Fanh and tPFah for output of pin 14 (R OUT). Input 0.5Vp-p signal shown by (a) in the following figure to pin 24 (Analog G IN). Referring to (b) of the following figure, perform the same measurement as the above step 3 for output of pin 13 (G OUT). Input 0.5Vp-p signal shown by (a) in the following figure to pin 25 (Analog B IN). Referring to (b) of the following figure, perform the same measurement as the above step 3 for output of pin 12 (B OUT). Find maximum axes difference in tPRoh and tPFoh among the three outputs (tPRah, tPFah).
NOTE
ITEM S21 S22
T67

--
--
--
--
--
--
--
--
--
(6) (7) -- -- -- -- -- -- -- -- -- (8)
T68
Analog RGB Hi Switching Rise-Up Transfer Time, 3 Axes Difference
T69
Analog RGB Hi Switching Breaking Time

--
--
--
--
--
--
--
--
--
T70
Analog RGB Hi Switching Breaking Transfer Time

--
--
--
--
--
--
--
--
--
T71
Analog RGB Hi Switching Breaking Transfer Time, 3 Axes Difference

--
--
--
--
--
--
--
--
--
85
2004-05-24
TB1227CNG
NOTE ITEM S21 S22 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 -- -- -- -- -- -- -- -- -- (1) (2) (3) (4) T72 TV-Analog RGB Crosstalk B A B B B A -- -- -- -- -- -- -- -- -- (5) (6) (7) (8) (9) Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to pin 31 (Y2 IN). Short circuit pin 25 (Analog G IN) in AC coupling. Input 0.3V synchronizing signal to pin 51 (Sync IN). Set bus data so that contrast is maximum, Y sub contrast and drive are set at center value. Supply pin 22 (Analog Ys) with 0V of external power supply. Measure video voltage of output signal of pin 13 (G OUT) (Vtg). Supply pin 22 (Analog Ys) with 2V of external power supply. Measure video voltage of output signal of pin 13 (G OUT) (Vana). From measurement results of the above steps 5 and 7, calculate crosstalk from TV to analog RGB. Crtva = 20og (Vana / Vtv) (1) (2) (3) (4) T73 Analog RGB-TV Crosstalk -- -- -- -- -- -- -- -- -- (5) (6) (7) (8) (9) Short circuit pin 31 (Y2 IN), pin 34 (R-Y IN) and pin33 (B-Y IN) in AC coupling. Input 0.3V synchronizing signal to pin 51 (Sync IN). Set bus data so that contrast is maximum and drive is set at center value. Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to pin 24 (Analog G IN). Supply pin 22 (Analog Ys) with 0V of external power supply. Measure video voltage of output signal of pin 13 (G OUT) (Vant). Supply pin 22 (Analog Ys) with 2V of external power supply. Measure video voltage of output signal of pin 13 (G OUT) (Vtan). From measurement results of the above steps 6 and 8, calculate crosstalk from analog RGB to TV. Crant = 20og (Vant / Vtan)
86
2004-05-24
TB1227CNG
NOTE ITEM S21 S22 TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA MEASURING METHOD S31 S33 S34 S51 -- -- -- 01H 15H -- -- -- -- (1) (2) 10H T74 ABL Point Characteristic B B B B B A -- -- -- FFH 90H F0H -- -- -- -- (3) Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to pin 31 (Y2 IN). Short circuit pin 23 (Analog R IN), pin 25 (Analog G IN) and pin 26 (Analog B IN) in AC coupling. Set bus data so that brightness is maximum and ABL gain is at center value, and supply pin 16 with external supply voltage. While turning down voltage supplied to pin 16 gradually from 7V, measure voltage at pin16 when the voltage supplied to pin 12 decreases by 0.3V in three conditions that data on ABL point is set at minimum, center and maximum values respectively. (Vablpl, Vablpc, Vablph) Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to pin 31 (Y2 IN). Input 0.3V synchronizing signal to pin 51 (Sync IN). Measure video amplitude at pin 12. (Vacl1) Measure DC voltage at pin 16 (ABCL). Supply pin 16 with a voltage that the voltage measured in the above step 4 minus 2V. Measure video amplitude at pin 12 (Vacl2) and its ratio to the amplitude measured in the above step 3. Vacl = 20og (Vacl2 / Vacl1) (1) (2) (3) 00H T76 ABL Gain Characteristic -- -- -- FFH 10H 1CH (6) -- -- -- -- (4) (5) Short circuit pin 31 (Y2 IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in AC coupling. Input 0.3V synchronizing signal to pin 51 (Sync IN). Set bus data on brightness at maximum and measure video DC voltage at pin 12 (Vmax). Measure voltage at pin 16 which is being supplied with the voltage measured in the step 5 of the preceding Note 75. Changing setting of bus data on ABL gain at minimum, center and maximum values one after another, measure video DC voltage at pin 12. (Vabl1, Vabl2, Vabl3) Find respective differences of Vabl1, Vabl2 and Vabl3 from the voltage measured in the above step 3. Vabll = Vmax - Vabl1 Vablc = Vmax - Vabl2 Vablh = Vmax - Vabl3
(1) (2) (3) T75 ACL Characteristic -- -- -- -- -- -- -- -- -- (4) (5) (6)
87
2004-05-24
TB1227CNG
SECAM SECTION
NOTE ITEM S 26 Bell Monitor Output Amplitude TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) BUS : TEST MODE BUS : NORMAL CONTROL MODE MEASURING METHOD 02H 07H 0FH 10H 1FH D0 D4 D3 D2 D7 D5 D4 D4 D7 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 (1) S1 ON 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 (2) (1) Input 200mVp-p (R-Y ID), 75% chroma color bar signal (SECAM system) to pin 42. Measure amplitude of R-Y ID output of pin 36 as ebmo. While supplying 20mVp-p CW sweep signal from network analyzer to pin 42 and monitoring output signal of pin 36 with the network analyzer, measure frequency having maximum gain as foBEL of the bell frequency characteristic. Find difference between foBEL and 4.286MHz as foB-C. The same procedure as the steps 1 and 2 of the Note S2. Measure foBEL in different condition that SUB (IF) D1D0 = (00) or (11), and find difference of each measurement result from 4.286MHz as foB-L or foB-H. The same procedure as the step 1 of the Note S2. While monitoring output signal of pin 36 with network analyzer, measure Q of bell frequency characteristic as QBEL. QBEL = (QMAX -3dB band width) / FoBEL Input 200mVp-p (R-Y ID), 75% chroma color bar signal (SECAM system) to pin 42. Measure color difference levels VRS and VBS with signals of pin 35 and pin 36. Calculate relative amplitude from VRS / VBS.
S2
Bell Filter fo





(2) (1)
S3
Bell Filter fo Variable Range





Vari- Vari- (2) able able
(1) S4 Bell Filter Q 0 1 (2)
S5
Color Difference Output Amplitude Color Difference Relative Amplitude
OFF --
--
--
--
--
--
0



(1) (2)
S6
--
--
--
--
--
--




(3)
88
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) BUS : TEST MODE BUS : NORMAL CONTROL MODE MEASURING METHOD 02H 07H 0FH 10H 1FH D4 D3 D2 D7 D5 D4 D4 D7 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 (1) (2) S7 Color Difference Attenuation Quantity OFF -- -- -- -- -- -- 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 The same procedure as the steps 1 and 2 of the Note S5. In the condition that SUB (IF) D6 = 1, measure amplitudes of color difference signals of pin 35 and pin36 as VRSA and VBSA respectively, and find SATTR and SATTB from measurement results. SATTR = 20og (VRSA / VRS), SATTB = 20og (VBSA / VBS) (1) (2) Color Difference S / N Ratio (3) The same procedure as the steps 1 and 2 of the Note S5. Input non-modulated 200Vp-p (R-Y) chroma signal to pin 42. Measure noise amplitude nR and nB (mVp-p) appearing in color difference signals of pin 35 and pin 36 respectively. Find S / N ratio by the following equation.
NOTE
ITEM
S 26
S8
--
--
--
--
--
--


0

(4)
SNB - S = 20log (2 2 x VBS / nB x 10E - 3) SNR - S = 20log (2 2 x VRS / nR x 10E - 3) (1) (2) The same procedure as the step 1 of the Note S5. Measure and calculate amplitude of black bar levels in output waveforms of pin 35 and pin 36 as shown below. LinB = V [cyan] / V [red] Maximum positive / negative amplitudes in respective axes LinR = V [yellow] / V [blue]
S9
Linearity
--
--
--
--
--
--




89
2004-05-24
TB1227CNG
TEST CONDITION (Unless otherwise specified : H, RGB VCC = 9V ; VDD, Fsc VDD, Y / C VCC = 5V ; Ta = 253C) BUS : TEST MODE BUS : NORMAL CONTROL MODE MEASURING METHOD 02H 07H 0FH 10H 1FH D4 D3 D2 D7 D5 D4 D4 D7 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 (1) (2) S10 Rising-Fall Time (Standard De-Emphasis) OFF -- -- -- -- -- -- 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 The same procedure as the step 1 of the Note S5. Measure output waveforms of pin 35 and pin 36 to find the period between the two points shown in the figure in time.
NOTE
ITEM
S 26
S11
Rising-Fall Time (Wide-Band De-Emphasis)
--
--
--
--
--
--




(3)
In the condition that SUB (IF) D5 = 1, perform the same measurement as the above step 2. Measurement results are expressed as trfBW and trfRW. Input 200mVp-p (R-Y ID) standard 75% color bar signal (SECAM system) to pin 42. Attenuate the input signal to pin 42. Measure R-Y ID signal level at pin 42 that turns on / off the killer as eSK and eSC. In the condition that SUB (IF) D3 = 1, perform the same measurement as the above step 2 and express the measurement results as eSFK and eSFC. In the condition that SUB (IF) D3 = 0, D2 = 1, perform the same measurement as the above step 2 and express the measurement results as eSWK and eSWC.
S12
Killer Operation Input Level (Standard Setting)
(1) -- -- -- -- -- -- 1 (2)
S13
Killer Operation Input Level (VID ON)
--
--
--
--
--
--


0
1
(3)
S14
Killer Operation Input Level (Low Sensitivity, VID OFF)
(4) -- -- -- -- -- -- 0 1
90
2004-05-24
TB1227CNG
TEST CIRCUIT
TB1227CNG
91
2004-05-24
TB1227CNG
APPLICATION CIRCUIT
TB1227CNG
92
2004-05-24
TB1227CNG
PACKAGE DIMENSIONS
Weight: 5.55g (Typ.)
93
2004-05-24
TB1227CNG
About solderability, following conditions were confirmed * Solderability (1) Use of Sn-63Pb solder Bath * solder bath temperature = 230C * dipping time = 5 seconds * the number of times = once * use of R-type flux (2) Use of Sn-3.0Ag-0.5Cu solder Bath * solder bath temperature = 245C * dipping time = 5 seconds * the number of times = once * use of R-type flux
RESTRICTIONS ON PRODUCT USE
* The information contained herein is subject to change without notice.
030619EBA
* The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. * TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. * The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. * The products described in this document are subject to the foreign exchange and foreign trade laws. * TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
94
2004-05-24


▲Up To Search▲   

 
Price & Availability of TB1227CNG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X